Volume 9 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
Jinxiu Hou, Yi Zheng, Chengjiang Gao. Regulation of cellular senescence by innate immunity. Biophysics Reports, 2023, 9(6): 338-351. doi: 10.52601/bpr.2023.230032
Citation: Jinxiu Hou, Yi Zheng, Chengjiang Gao. Regulation of cellular senescence by innate immunity. Biophysics Reports, 2023, 9(6): 338-351. doi: 10.52601/bpr.2023.230032

Regulation of cellular senescence by innate immunity

doi: 10.52601/bpr.2023.230032
More Information
  • Corresponding author: zhengyiabc2011@sdu.edu.cn (Y. Zheng); cgao@sdu.edu.cn (C. Gao)
  • Received Date: 30 October 2023
  • Accepted Date: 12 January 2024
  • Available Online: 26 February 2024
  • Publish Date: 01 December 2023
  • During the COVID-19 pandemic, the interplay between the processes of immunity and senescence is drawing more and more intensive attention. SARS-CoV-2 infection induces senescence in lung cells, failure to clear infected cells and increased presence of inflammatory factors could lead to a cytokine storm and acute respiratory disease syndrome (ARDS), which together with aging and age-associated disease lead to 70% of COVID-19-related deaths. Studies on how senescence initiates upon viral infection and how to restrict excessive accumulation of senescent cells to avoid harmful inflammation are crucially important. Senescence can induce innate immune signaling, and innate immunity can engage cell senescence. Here, we mainly review the innate immune pathways, such as cGAS-STING, TLRs, NF-κB, and NLRP3 inflammasome, participating in the senescence process. In these pathways, IFN-I and inflammatory factors play key roles. At the end of the review, we propose the strategies by which we can improve the immune function and reduce inflammation based on these findings.

  • Jinxiu Hou, Yi Zheng, and Chengjiang Gao declare that they have no conflict of interest
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Ablasser A, Hur S (2020) Regulation of cGAS- and RLR-mediated immunity to nucleic acids. Nat Immunol 21(1): 17−29 doi: 10.1038/s41590-019-0556-1
    Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8): 978−990 doi: 10.1038/ncb2784
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4): 783−801 doi: 10.1016/j.cell.2006.02.015
    Aleynick M, Svensson-Arvelund J, Flowers CR, Marabelle A, Brody JD (2019) Pathogen molecular pattern receptor agonists: treating cancer by mimicking infection. Clin Cancer Res 25(21): 6283−6294 doi: 10.1158/1078-0432.CCR-18-1800
    Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR (2018) Pattern recognition receptors and the host cell death molecular machinery. Front Immunol 9: 2379. https://doi.org/10.3389/fimmu.2018.02379
    Anthoney N, Foldi I, Hidalgo A (2018) Toll and Toll-like receptor signalling in development. Development 145(9): dev156018. https://doi.org/10.1242/dev.156018
    Arai Y, Martin-Ruiz CM, Takayama M, Abe Y, Takebayashi T, Koyasu S, Suematsu M, Hirose N, von Zglinicki T (2015) Inflammation, but not telomere length, predicts successful ageing at extreme old age: a longitudinal study of semi-supercentenarians. EBioMedicine 2(10): 1549−1558 doi: 10.1016/j.ebiom.2015.07.029
    Arancibia SA, Beltran CJ, Aguirre IM, Silva P, Peralta AL, Malinarich F, Hermoso MA (2007) Toll-like receptors are key participants in innate immune responses. Biol Res 40(2): 97−112
    Araya RE, Goldszmid RS (2017) IFNAR1 degradation: a new mechanism for tumor immune evasion? Cancer Cell 31(2): 161-163
    Ashley CL, Abendroth A, McSharry BP, Slobedman B (2019) Interferon-independent innate responses to cytomegalovirus. Front Immunol 10: 2751. https://doi.org/10.3389/fimmu.2019.02751
    Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234): 286−290 doi: 10.1126/science.270.5234.286
    Azam S, Jakaria M, Kim IS, Kim J, Haque ME, Choi DK (2019) Regulation of Toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol 10: 1000. https://doi.org/10.3389/fimmu.2019.01000
    Battagello DS, Dragunas G, Klein MO, Ayub ALP, Velloso FJ, Correa RG (2020) Unpuzzling COVID-19: tissue-related signaling pathways associated with SARS-CoV-2 infection and transmission. Clin Sci (Lond) 134(16): 2137−2160 doi: 10.1042/CS20200904
    Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, Campisi J (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16): 4212−4222 doi: 10.1093/emboj/cdg417
    Bharath LP, Agrawal M, McCambridge G, Nicholas DA, Hasturk H, Liu J, Jiang K, Liu R, Guo Z, Deeney J, Apovian CM, Snyder-Cappione J, Hawk GS, Fleeman RM, Pihl RMF, Thompson K, Belkina AC, Cui L, Proctor EA, Kern PA, Nikolajczyk BS (2020) Metformin Enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab 32(1): 44−55
    Bhaskar S, Shalini V, Helen A (2011) Quercetin regulates oxidized LDL induced inflammatory changes in human PBMCs by modulating the TLR-NF-kappaB signaling pathway. Immunobiology 216(3): 367−373 doi: 10.1016/j.imbio.2010.07.011
    Bonekamp NA, Larsson NG (2018) SnapShot: mitochondrial nucleoid. Cell 172(1−2): 388−388.e1
    Brasier AR (2010) The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86(2): 211−218 doi: 10.1093/cvr/cvq076
    Braumuller H, Wieder T, Brenner E, Assmann S, Hahn M, Alkhaled M, Schilbach K, Essmann F, Kneilling M, Griessinger C, Ranta F, Ullrich S, Mocikat R, Braungart K, Mehra T, Fehrenbacher B, Berdel J, Niessner H, Meier F, van den Broek M, Haring HU, Handgretinger R, Quintanilla-Martinez L, Fend F, Pesic M, Bauer J, Zender L, Schaller M, Schulze-Osthoff K, Rocken M (2013) T-helper-1-cell cytokines drive cancer into senescence. Nature 494(7437): 361−365 doi: 10.1038/nature11824
    Bruunsgaard H (2006) The clinical impact of systemic low-level inflammation in elderly populations. With special reference to cardiovascular disease, dementia and mortality. Dan Med Bull 53(3): 285−309
    Buhl JL, Selt F, Hielscher T, Guiho R, Ecker J, Sahm F, Ridinger J, Riehl D, Usta D, Ismer B, Sommerkamp AC, Martinez-Barbera JP, Wefers AK, Remke M, Picard D, Pusch S, Gronych J, Oehme I, van Tilburg CM, Kool M, Kuhn D, Capper D, von Deimling A, Schuhmann MU, Herold-Mende C, Korshunov A, Brummer T, Pfister SM, Jones DTW, Witt O, Milde T (2019) The senescence-associated secretory phenotype mediates oncogene-induced senescence in pediatric pilocytic astrocytoma. Clin Cancer Res 25(6): 1851−1866 doi: 10.1158/1078-0432.CCR-18-1965
    Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ (2018) Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562(7728): 578−582 doi: 10.1038/s41586-018-0543-y
    Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JJ, Liu GH (2022) The landscape of aging. Sci China Life Sci 65(12): 2354−2454 doi: 10.1007/s11427-022-2161-3
    Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A (2019) Cellular senescence: aging, cancer, and injury. Physiol Rev 99(2): 1047−1078 doi: 10.1152/physrev.00020.2018
    Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel JL, Sen GC (2016) Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity 44(5): 1151−1161 doi: 10.1016/j.immuni.2016.04.009
    Chen G, Kroemer G, Kepp O (2020) Mitophagy: an emerging role in aging and age-associated diseases. Front Cell Dev Biol 8: 200. https://doi.org/10.3389/fcell.2020.00200
    Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE, Premsrirut P, Luo W, Chicas A, Lee CS, Kogan SC, Lowe SW (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20): 2125−2136 doi: 10.1101/gad.17276711
    Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10): 718−735 doi: 10.1038/nrd.2017.116
    Childs BG, Li H, van Deursen JM (2018) Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest 128(4): 1217−1228 doi: 10.1172/JCI95146
    Cohen P, Strickson S (2017) The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 24(7): 1153−1159 doi: 10.1038/cdd.2017.17
    Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5: 99−118 doi: 10.1146/annurev-pathol-121808-102144
    Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12): 2853−2868
    Corrales L, Matson V, Flood B, Spranger S, Gajewski TF (2017) Innate immune signaling and regulation in cancer immunotherapy. Cell Res 27(1): 96−108 doi: 10.1038/cr.2016.149
    D'Acquisto F, May MJ, Ghosh S (2002) Inhibition of nuclear factor kappa B (NF-B): an emerging theme in anti-inflammatory therapies. Mol Interv 2(1): 22−35 doi: 10.1124/mi.2.1.22
    d'Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer 8(7): 512−522 doi: 10.1038/nrc2440
    Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, Xue W, Cai H, Zhan XY, Huang SY, He K, Wang H, Wang N, Sang Z, Li T, Han QY, Mao J, Diao X, Song N, Chen Y, Li WH, Man JH, Li AL, Zhou T, Liu ZG, Zhang XM, Li T (2019) Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176(6): 1447−1460
    Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, Beausejour CM, Coppe JP, Rodier F, Campisi J (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201(4): 613−629 doi: 10.1083/jcb.201206006
    De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beausejour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566(7742): 73−78 doi: 10.1038/s41586-018-0784-9
    De Nardo D, Balka KR, Cardona Gloria Y, Rao VR, Latz E, Masters SL (2018) Interleukin-1 receptor-associated kinase 4 (IRAK4) plays a dual role in myddosome formation and Toll-like receptor signaling. J Biol Chem 293(39): 15195−15207 doi: 10.1074/jbc.RA118.003314
    Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, Li XD, Mauceri H, Beckett M, Darga T, Huang X, Gajewski TF, Chen ZJ, Fu YX, Weichselbaum RR (2014) STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41(5): 843−852 doi: 10.1016/j.immuni.2014.10.019
    Dorrington MG, Fraser IDC (2019) NF-kappaB signaling in macrophages: dynamics, crosstalk, and signal integration. Front Immunol 10: 705. https://doi.org/10.3389/fimmu.2019.00705
    Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP, Catanzaro JM, Ricketts MD, Lamark T, Adam SA, Marmorstein R, Zong WX, Johansen T, Goldman RD, Adams PD, Berger SL (2015) Autophagy mediates degradation of nuclear lamina. Nature 527(7576): 105−109 doi: 10.1038/nature15548
    Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D (2011) Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res 9(5): 589−602 doi: 10.1158/1541-7786.MCR-10-0565
    Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, Jonsson KL, Jakobsen MR, Nevels MM, Bowie AG, Unterholzner L (2018) Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-kappaB signaling after nuclear dna damage. Mol Cell 71(5): 745-760 e745
    Erdal E, Haider S, Rehwinkel J, Harris AL, McHugh PJ (2017) A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev 31(4): 353−369 doi: 10.1101/gad.289769.116
    Fang L, Choudhary S, Zhao Y, Edeh CB, Yang C, Boldogh I, Brasier AR (2014) ATM regulates NF-kappaB-dependent immediate-early genes via RelA Ser 276 phosphorylation coupled to CDK9 promoter recruitment. Nucleic Acids Res 42(13): 8416−8432 doi: 10.1093/nar/gku529
    Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26(1): 125−132 doi: 10.1093/mutage/geq052
    Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180(6): 1044−1066 doi: 10.1016/j.cell.2020.02.041
    Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908: 244−254
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1): S4−9 doi: 10.1093/gerona/glu057
    Freund A, Orjalo AV, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16(5): 238−246 doi: 10.1016/j.molmed.2010.03.003
    Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30(8): 1536−1548 doi: 10.1038/emboj.2011.69
    Frisch SM, MacFawn IP (2020) Type I interferons and related pathways in cell senescence. Aging Cell 19(10): e13234. https://doi.org/10.1111/acel.13234
    Fuchs SY (2013) Hope and fear for interferon: the receptor-centric outlook on the future of interferon therapy. J Interferon Cytokine Res 33(4): 211−225 doi: 10.1089/jir.2012.0117
    Fukuda D, Nishimoto S, Aini K, Tanaka A, Nishiguchi T, Kim-Kaneyama JR, Lei XF, Masuda K, Naruto T, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Kusunose K, Yamada H, Soeki T, Imoto I, Akasaka T, Shimabukuro M, Sata M (2019) Toll-like receptor 9 plays a pivotal role in angiotensin II-induced atherosclerosis. J Am Heart Assoc 8(7): e010860. https://doi.org/10.1161/JAHA.118.010860
    Gay NJ, Keith FJ (1991) Drosophila Toll and IL-1 receptor. Nature 351(6325): 355−356
    Gay NJ, Symmons MF, Gangloff M, Bryant CE (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14(8): 546−558 doi: 10.1038/nri3713
    Ge H, Ke J, Xu N, Li H, Gong J, Li X, Song Y, Zhu H, Bai C (2018) Dexamethasone alleviates pemetrexed-induced senescence in non-small-cell lung cancer. Food Chem Toxicol 119: 86−97 doi: 10.1016/j.fct.2018.05.025
    Ghanam AR, Cao J, Ouyang X, Song X (2019) New insights into chronological mobility of retrotransposons in vivo. Oxid Med Cell Longev 2019: 2818415. https://doi.org/10.1155/2019/2818415
    Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, Hara E, Krizhanovsky V, Jurk D, Maier AB, Narita M, Niedernhofer L, Passos JF, Robbins PD, Schmitt CA, Sedivy J, Vougas K, von Zglinicki T, Zhou D, Serrano M, Demaria M (2019) Cellular senescence: defining a path forward. Cell 179(4): 813−827 doi: 10.1016/j.cell.2019.10.005
    Graziano S, Kreienkamp R, Coll-Bonfill N, Gonzalo S (2018) Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus 9(1): 258−275
    Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC, Wang GG, Kamps MP, Raz E, Wagner H, Hacker G, Mann M, Karin M (2006) Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439(7073): 204−207 doi: 10.1038/nature04369
    Hari P, Millar FR, Tarrats N, Birch J, Quintanilla A, Rink CJ, Fernandez-Duran I, Muir M, Finch AJ, Brunton VG, Passos JF, Morton JP, Boulter L, Acosta JC (2019) The innate immune sensor Toll-like receptor 2 controls the senescence-associated secretory phenotype. Sci Adv 5(6): eaaw0254. https://doi.org/10.1126/sciadv.aaw0254
    Hariharan A, Hakeem AR, Radhakrishnan S, Reddy MS, Rela M (2021) The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology 29(1): 91−100 doi: 10.1007/s10787-020-00773-9
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614−636 doi: 10.1016/0014-4827(65)90211-9
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585−621 doi: 10.1016/0014-4827(61)90192-6
    He M, Chiang HH, Luo H, Zheng Z, Qiao Q, Wang L, Tan M, Ohkubo R, Mu WC, Zhao S, Wu H, Chen D (2020) An acetylation switch of the NLRP3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab 31(3): 580−591.e5
    Hinz M, Stilmann M, Arslan SC, Khanna KK, Dittmar G, Scheidereit C (2010) A cytoplasmic ATM-TRAF6-cIAP1 module links nuclear DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol Cell 40(1): 63−74 doi: 10.1016/j.molcel.2010.09.008
    Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW, Schweitzer JB, Kalbfleisch JH, Li C (2007) Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190(1-2): 101−111 doi: 10.1016/j.jneuroim.2007.08.014
    Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927): 258−267
    Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461(7265): 788−792 doi: 10.1038/nature08476
    Ito Y, Hoare M, Narita M (2017) Spatial and temporal control of senescence. Trends Cell Biol 27(11): 820−832 doi: 10.1016/j.tcb.2017.07.004
    Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327(5963): 291−295 doi: 10.1126/science.1183021
    Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349(6255): aaa5612. https://doi.org/10.1126/science.aaa5612
    Karadimou G, Folkersen L, Berg M, Perisic L, Discacciati A, Roy J, Hansson GK, Persson J, Paulsson-Berne G (2017) Low TLR7 gene expression in atherosclerotic plaques is associated with major adverse cardio- and cerebrovascular events. Cardiovasc Res 113(1): 30−39 doi: 10.1093/cvr/cvw231
    Kawai T, Akira S (2007) Antiviral signaling through pattern recognition receptors. J Biochem 141(2): 137−145
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5): 373−384 doi: 10.1038/ni.1863
    Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5): 637−650 doi: 10.1016/j.immuni.2011.05.006
    Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H, Yamamoto M, Terai K, Matsuda M, Inoue J, Uematsu S, Takeuchi O, Akira S (2004) Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat Immunol 5(10): 1061−1068 doi: 10.1038/ni1118
    Kerfoot SM, Long EM, Hickey MJ, Andonegui G, Lapointe BM, Zanardo RC, Bonder C, James WG, Robbins SM, Kubes P (2004) TLR4 contributes to disease-inducing mechanisms resulting in central nervous system autoimmune disease. J Immunol 173(11): 7070−7077 doi: 10.4049/jimmunol.173.11.7070
    Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, Wang K, Zhu J, Yoon HE, Wang X, Kerkhofs M, Kang H, Brown AL, Park SJ, Xu X, Zandee van Rilland E, Kim MK, Cohen JI, Kaplan MJ, Shoshan-Barmatz V, Chung JH (2019a) VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science 366(6472): 1531−1536 doi: 10.1126/science.aav4011
    Kim J, Seo M, Kim SK, Bae YS (2016) Flagellin-induced NADPH oxidase 4 activation is involved in atherosclerosis. Sci Rep 6: 25437. https://doi.org/10.1038/srep25437
    Kim J, Yoo JY, Suh JM, Park S, Kang D, Jo H, Bae YS (2019b) The flagellin-TLR5-Nox4 axis promotes the migration of smooth muscle cells in atherosclerosis. Exp Mol Med 51(7): 1−13
    Kohli J, Veenstra I, Demaria M (2021) The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep 22(4): e52243. https://doi.org/10.15252/embr.202052243
    Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39(5): 687−699 doi: 10.1016/j.exger.2004.01.009
    Kreienkamp R, Graziano S, Coll-Bonfill N, Bedia-Diaz G, Cybulla E, Vindigni A, Dorsett D, Kubben N, Batista LFZ, Gonzalo S (2018) A cell-intrinsic interferon-like response links replication stress to cellular aging caused by progerin. Cell Rep 22(8): 2006−2015 doi: 10.1016/j.celrep.2018.01.090
    Krizhanovsky V, Xue W, Zender L, Yon M, Hernando E, Lowe SW (2008) Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harb Symp Quant Biol 73: 513−522 doi: 10.1101/sqb.2008.73.048
    Kuilman T, Peeper DS (2009) Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 9(2): 81−94 doi: 10.1038/nrc2560
    Kulaeva OI, Draghici S, Tang L, Kraniak JM, Land SJ, Tainsky MA (2003) Epigenetic silencing of multiple interferon pathway genes after cellular immortalization. Oncogene 22(26): 4118−4127 doi: 10.1038/sj.onc.1206594
    Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, Liu S, Demaria M, Cong YS, Kapahi P, Desprez PY, Hughes RE, Campisi J (2012) Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11(4): 569−578 doi: 10.1111/j.1474-9726.2012.00818.x
    Lama L, Adura C, Xie W, Tomita D, Kamei T, Kuryavyi V, Gogakos T, Steinberg JI, Miller M, Ramos-Espiritu L, Asano Y, Hashizume S, Aida J, Imaeda T, Okamoto R, Jennings AJ, Michino M, Kuroita T, Stamford A, Gao P, Meinke P, Glickman JF, Patel DJ, Tuschl T (2019) Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat Commun 10(1): 2261. https://doi.org/10.1038/s41467-019-08620-4
    Li B, Xia Y, Hu B (2020) Infection and atherosclerosis: TLR-dependent pathways. Cell Mol Life Sci 77(14): 2751−2769 doi: 10.1007/s00018-020-03453-7
    Li T, Chen ZJ (2018) The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J Exp Med 215(5): 1287−1299 doi: 10.1084/jem.20180139
    Liu H, Yan Z, Zhu D, Xu H, Liu F, Chen T, Zhang H, Zheng Y, Liu B, Zhang L, Zhao W, Gao C (2023) CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity. Cell Death Differ 30(4): 992−1004 doi: 10.1038/s41418-023-01116-1
    Liu Y, Xu X, Lei W, Hou Y, Zhang Y, Tang R, Yang Z, Tian Y, Zhu Y, Wang C, Deng C, Zhang S, Yang Y (2022) The NLRP3 inflammasome in fibrosis and aging: The known unknowns. Ageing Res Rev 79: 101638. https://doi.org/10.1016/j.arr.2022.101638
    Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1): S232−240
    Lukhele S, Boukhaled GM, Brooks DG (2019) Type I interferon signaling, regulation and gene stimulation in chronic virus infection. Semin Immunol 43: 101277. https://doi.org/10.1016/j.smim.2019.05.001
    Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti TD, Chen D (2019) Mitochondrial stress-initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep 26(4): 945−954.e4
    Malaquin N, Martinez A, Rodier F (2016) Keeping the senescence secretome under control: molecular reins on the senescence-associated secretory phenotype. Exp Gerontol 82: 39−49 doi: 10.1016/j.exger.2016.05.010
    Mannarino M, Cherif H, Li L, Sheng K, Rabau O, Jarzem P, Weber MH, Ouellet JA, Haglund L (2021) Toll-like receptor 2 induced senescence in intervertebral disc cells of patients with back pain can be attenuated by o-vanillin. Arthritis Res Ther 23(1): 117. https://doi.org/10.1186/s13075-021-02504-z
    Marin-Aguilar F, Castejon-Vega B, Alcocer-Gomez E, Lendines-Cordero D, Cooper MA, de la Cruz P, Andujar-Pulido E, Perez-Alegre M, Muntane J, Perez-Pulido AJ, Ryffel B, Robertson AAB, Ruiz-Cabello J, Bullon P, Cordero MD (2020) NLRP3 inflammasome inhibition by MCC950 in aged mice improves health via enhanced autophagy and pparalpha activity. J Gerontol A Biol Sci Med Sci 75(8): 1457−1464 doi: 10.1093/gerona/glz239
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081): 237−241 doi: 10.1038/nature04516
    McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT (2018) BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 359(6378): eaao6047. https://doi.org/10.1126/science.aao6047
    Menon R, Richardson LS, Lappas M (2019) Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 79: 40−45 doi: 10.1016/j.placenta.2018.11.003
    Meyer P, Maity P, Burkovski A, Schwab J, Mussel C, Singh K, Ferreira FF, Krug L, Maier HJ, Wlaschek M, Wirth T, Kestler HA, Scharffetter-Kochanek K (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 13(12): e1005741. https://doi.org/10.1371/journal.pcbi.1005741
    Moiseeva O, Deschenes-Simard X, St-Germain E, Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, Ferbeyre G (2013) Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12(3): 489−498 doi: 10.1111/acel.12075
    Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17(4): 1583−1592 doi: 10.1091/mbc.e05-09-0858
    Motwani M, Pesiridis S, Fitzgerald KA (2019) DNA sensing by the cGAS-STING pathway in health and disease. Nat Rev Genet 20(11): 657−674 doi: 10.1038/s41576-019-0151-1
    Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155(5): 1104−1118 doi: 10.1016/j.cell.2013.10.019
    Munoz-Espin D, Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15(7): 482−496 doi: 10.1038/nrm3823
    Navarro-Pando JM, Alcocer-Gomez E, Castejon-Vega B, Navarro-Villaran E, Condes-Hervas M, Mundi-Roldan M, Muntane J, Perez-Pulido AJ, Bullon P, Wang C, Hoffman HM, Sanz A, Mbalaviele G, Ryffel B, Cordero MD (2021) Inhibition of the NLRP3 inflammasome prevents ovarian aging. Sci Adv 7(1): eabc7409. https://doi.org/10.1126/sciadv.abc7409
    Ng CT, Mendoza JL, Garcia KC, Oldstone MB (2016) Alpha and beta type 1 interferon signaling: passage for diverse biologic outcomes. Cell 164(3): 349−352 doi: 10.1016/j.cell.2015.12.027
    Ngo HB, Lovely GA, Phillips R, Chan DC (2014) Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun 5: 3077. https://doi.org/10.1038/ncomms4077
    Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4): a000034. https://doi.org/10.1101/cshperspect.a000034
    Okun E, Griffioen KJ, Lathia JD, Tang SC, Mattson MP, Arumugam TV (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59(2): 278−292 doi: 10.1016/j.brainresrev.2008.09.001
    Paul BD, Snyder SH, Bohr VA (2021) Signaling by cGAS-STING in neurodegeneration, neuroinflammation, and aging. Trends Neurosci 44(2): 83−96 doi: 10.1016/j.tins.2020.10.008
    Qadir AS, Stults AM, Murmann AE, Peter ME (2020) The mechanism of how CD95/Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Sci Rep 10(1): 1310. https://doi.org/10.1038/s41598-020-58211-3
    Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L, Keyes WM (2017) The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31(2): 172−183 doi: 10.1101/gad.290635.116
    Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4): 547−556 doi: 10.1083/jcb.201009094
    Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11(8): 973−979 doi: 10.1038/ncb1909
    Roh JS, Sohn DH (2018) Damage-associated molecular patterns in inflammatory diseases. Immune Netw 18(4): e27. https://doi.org/10.4110/in.2018.18.e27
    Salama R, Sadaie M, Hoare M, Narita M (2014) Cellular senescence and its effector programs. Genes Dev 28(2): 99−114 doi: 10.1101/gad.235184.113
    Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24(4): 835−845 doi: 10.1016/j.cellsig.2011.12.006
    Sangfelt O, Erickson S, Castro J, Heiden T, Gustafsson A, Einhorn S, Grander D (1999) Molecular mechanisms underlying interferon-alpha-induced G0/G1 arrest: CKI-mediated regulation of G1 Cdk-complexes and activation of pocket proteins. Oncogene 18(18): 2798−2810 doi: 10.1038/sj.onc.1202609
    Sarig R, Rimmer R, Bassat E, Zhang L, Umansky KB, Lendengolts D, Perlmoter G, Yaniv K, Tzahor E (2019) Transient p53-mediated regenerative senescence in the injured heart. Circulation 139(21): 2491−2494 doi: 10.1161/CIRCULATIONAHA.119.040125
    Satoh T, Akira S (2016) Toll-like receptor signaling and its inducible proteins. Microbiol Spectr 4(6). https://doi.org/10.1128/microbiolspec.MCHD-0040-2016
    Schmitz CRR, Maurmann RM, Guma F, Bauer ME, Barbe-Tuana FM (2023) cGAS-STING pathway as a potential trigger of immunosenescence and inflammaging. Front Immunol 14: 1132653. https://doi.org/10.3389/fimmu.2023.1132653
    Schneider DS, Jin Y, Morisato D, Anderson KV (1994) A processed form of the Spatzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development 120(5): 1243−1250 doi: 10.1242/dev.120.5.1243
    Sharpless NE, Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15(7): 397−408 doi: 10.1038/nrc3960
    Sieben CJ, Sturmlechner I, van de Sluis B, van Deursen JM (2018) Two-step senescence-focused cancer therapies. Trends Cell Biol 28(9): 723−737 doi: 10.1016/j.tcb.2018.04.006
    Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remedios C, Fend L, Hannani D, Aymeric L, Ma Y, Niso-Santano M, Kepp O, Schultze JL, Tuting T, Belardelli F, Bracci L, La Sorsa V, Ziccheddu G, Sestili P, Urbani F, Delorenzi M, Lacroix-Triki M, Quidville V, Conforti R, Spano JP, Pusztai L, Poirier-Colame V, Delaloge S, Penault-Llorca F, Ladoire S, Arnould L, Cyrta J, Dessoliers MC, Eggermont A, Bianchi ME, Pittet M, Engblom C, Pfirschke C, Preville X, Uze G, Schreiber RD, Chow MT, Smyth MJ, Proietti E, Andre F, Kroemer G, Zitvogel L (2014) Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med 20(11): 1301−1309 doi: 10.1038/nm.3708
    Sladitschek-Martens HL, Guarnieri A, Brumana G, Zanconato F, Battilana G, Xiccato RL, Panciera T, Forcato M, Bicciato S, Guzzardo V, Fassan M, Ulliana L, Gandin A, Tripodo C, Foiani M, Brusatin G, Cordenonsi M, Piccolo S (2022) YAP/TAZ activity in stromal cells prevents ageing by controlling cGAS-STING. Nature 607(7920): 790−798 doi: 10.1038/s41586-022-04924-6
    Song LL, Ponomareva L, Shen H, Duan X, Alimirah F, Choubey D (2010) Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS One 5(1): e8569. https://doi.org/10.1371/journal.pone.0008569
    Song S, Lam EW, Tchkonia T, Kirkland JL, Sun Y (2020) Senescent cells: emerging targets for human aging and age-related diseases. Trends Biochem Sci 45(7): 578−592 doi: 10.1016/j.tibs.2020.03.008
    Stout-Delgado HW, Cho SJ, Chu SG, Mitzel DN, Villalba J, El-Chemaly S, Ryter SW, Choi AM, Rosas IO (2016) Age-dependent susceptibility to pulmonary fibrosis is associated with NLRP3 inflammasome activation. Am J Respir Cell Mol Biol 55(2): 252−263 doi: 10.1165/rcmb.2015-0222OC
    Tahara H, Kamada K, Sato E, Tsuyama N, Kim JK, Hara E, Oda K, Ide T (1995) Increase in expression levels of interferon-inducible genes in senescent human diploid fibroblasts and in SV40-transformed human fibroblasts with extended lifespan. Oncogene 11(6): 1125−1132
    Takahashi A, Loo TM, Okada R, Kamachi F, Watanabe Y, Wakita M, Watanabe S, Kawamoto S, Miyata K, Barber GN, Ohtani N, Hara E (2018) Downregulation of cytoplasmic DNases is implicated in cytoplasmic DNA accumulation and SASP in senescent cells. Nat Commun 9(1): 1249. https://doi.org/10.1038/s41467-018-03555-8
    Takahashi A, Ohtani N, Yamakoshi K, Iida S, Tahara H, Nakayama K, Nakayama KI, Ide T, Saya H, Hara E (2006) Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8(11): 1291−1297 doi: 10.1038/ncb1491
    Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T (2003) Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 424(6948): 516−523 doi: 10.1038/nature01850
    Tang TT, Lv LL, Pan MM, Wen Y, Wang B, Li ZL, Wu M, Wang FM, Crowley SD, Liu BC (2018) Hydroxychloroquine attenuates renal ischemia/reperfusion injury by inhibiting cathepsin mediated NLRP3 inflammasome activation. Cell Death Dis 9(3): 351. https://doi.org/10.1038/s41419-018-0378-3
    Teissier T, Boulanger E, Cox LS (2022) Interconnections between inflammageing and immunosenescence during ageing. Cells 11(3): 359. https://doi.org/10.3390/cells11030359
    Testa G, Gamba P, Badilli U, Gargiulo S, Maina M, Guina T, Calfapietra S, Biasi F, Cavalli R, Poli G, Leonarduzzi G (2014) Loading into nanoparticles improves quercetin's efficacy in preventing neuroinflammation induced by oxysterols. PLoS One 9(5): e96795. https://doi.org/10.1371/journal.pone.0096795
    Tripathi U, Nchioua R, Prata L, Zhu Y, Gerdes EOW, Giorgadze N, Pirtskhalava T, Parker E, Xue A, Espindola-Netto JM, Stenger S, Robbins PD, Niedernhofer LJ, Dickinson SL, Allison DB, Kirchhoff F, Sparrer KMJ, Tchkonia T, Kirkland JL (2021) SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 13(18): 21838−21854
    Verstak B, Nagpal K, Bottomley SP, Golenbock DT, Hertzog PJ, Mansell A (2009) MyD88 adapter-like (Mal)/TIRAP interaction with TRAF6 is critical for TLR2- and TLR4-mediated NF-kappaB proinflammatory responses. J Biol Chem 284(36): 24192−24203 doi: 10.1074/jbc.M109.023044
    Villarroya-Beltri C, Guerra S, Sanchez-Madrid F (2017) ISGylation — a key to lock the cell gates for preventing the spread of threats. J Cell Sci 130(18): 2961−2969
    von Bernuth H, Picard C, Jin Z, Pankla R, Xiao H, Ku CL, Chrabieh M, Mustapha IB, Ghandil P, Camcioglu Y, Vasconcelos J, Sirvent N, Guedes M, Vitor AB, Herrero-Mata MJ, Arostegui JI, Rodrigo C, Alsina L, Ruiz-Ortiz E, Juan M, Fortuny C, Yague J, Anton J, Pascal M, Chang HH, Janniere L, Rose Y, Garty BZ, Chapel H, Issekutz A, Marodi L, Rodriguez-Gallego C, Banchereau J, Abel L, Li X, Chaussabel D, Puel A, Casanova JL (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321(5889): 691−696 doi: 10.1126/science.1158298
    Wang X, Jung J, Asahi M, Chwang W, Russo L, Moskowitz MA, Dixon CE, Fini ME, Lo EH (2000) Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20(18): 7037−7042 doi: 10.1523/JNEUROSCI.20-18-07037.2000
    West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520(7548): 553−557 doi: 10.1038/nature14156
    Williams BR (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18(45): 6112−6120 doi: 10.1038/sj.onc.1203127
    Wise J (2020) Covid-19: Critically ill patients treated with arthritis drug tocilizumab show improved outcomes, researchers report. BMJ 371: m4530. https://doi.org/10.1136/bmj.m4530
    Wolf D, Ley K (2019) Immunity and inflammation in atherosclerosis. Circ Res 124(2): 315−327 doi: 10.1161/CIRCRESAHA.118.313591
    Wright SD (1999) Toll, a new piece in the puzzle of innate immunity. J Exp Med 189(4): 605−609 doi: 10.1084/jem.189.4.605
    Yang Y, Wang H, Kouadir M, Song H, Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10(2): 128. https://doi.org/10.1038/s41419-019-1413-8
    Yu Q, Katlinskaya YV, Carbone CJ, Zhao B, Katlinski KV, Zheng H, Guha M, Li N, Chen Q, Yang T, Lengner CJ, Greenberg RA, Johnson FB, Fuchs SY (2015) DNA-damage-induced type I interferon promotes senescence and inhibits stem cell function. Cell Rep 11(5): 785−797 doi: 10.1016/j.celrep.2015.03.069
    Yu X, Lan P, Hou X, Han Q, Lu N, Li T, Jiao C, Zhang J, Zhang C, Tian Z (2017) HBV inhibits LPS-induced NLRP3 inflammasome activation and IL-1beta production via suppressing the NF-kappaB pathway and ROS production. J Hepatol 66(4): 693−702 doi: 10.1016/j.jhep.2016.12.018
    Zahid A, Li B, Kombe AJK, Jin T, Tao J (2019) Pharmacological Inhibitors of the NLRP3 Inflammasome. Front Immunol 10: 2538. https://doi.org/10.3389/fimmu.2019.02538
    Zhang C, Cheng Z, Zhou Y, Yu Z, Mai H, Xu C, Zhang J, Wang J (2023) The novel hyaluronic acid granular hydrogel attenuates osteoarthritis progression by inhibiting the TLR-2/NF-kappaB signaling pathway through suppressing cellular senescence. Bioeng Transl Med 8(3): e10475. https://doi.org/10.1002/btm2.10475
    Zhang Q, Lenardo MJ, Baltimore D (2017) 30 years of NF-kappaB: a blossoming of relevance to human pathobiology. Cell 168(1−2): 37−57 doi: 10.1016/j.cell.2016.12.012
    Zhao Y, Simon M, Seluanov A, Gorbunova V (2023) DNA damage and repair in age-related inflammation. Nat Rev Immunol 23(2): 75−89 doi: 10.1038/s41577-022-00751-y
    Zheng Y, Gao C (2019) E3 ubiquitin ligases, the powerful modulator of innate antiviral immunity. Cell Immunol 340: 103915. https://doi.org/10.1016/j.cellimm.2019.04.003
    Zheng Y, Gao C (2023) Phase separation: the robust modulator of innate antiviral signaling and SARS-CoV-2 infection. Pathogens 12(2): 243. https://doi.org/10.3390/pathogens12020243
    Zierhut C, Funabiki H (2020) Regulation and consequences of cGAS activation by self-DNA. Trends Cell Biol 30(8): 594−605 doi: 10.1016/j.tcb.2020.05.006
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (441) PDF downloads(46) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint