Volume 8 Issue 1
Feb.  2022
Turn off MathJax
Article Contents
Long Houfang, Zeng Shuyi, Sun Yunpeng, Liu Cong. Biochemical and biophysical characterization of pathological aggregation of amyloid proteins[J]. Biophysics Reports, 2022, 8(1): 42-54. doi: 10.52601/bpr.2022.210032
Citation: Long Houfang, Zeng Shuyi, Sun Yunpeng, Liu Cong. Biochemical and biophysical characterization of pathological aggregation of amyloid proteins[J]. Biophysics Reports, 2022, 8(1): 42-54. doi: 10.52601/bpr.2022.210032

Biochemical and biophysical characterization of pathological aggregation of amyloid proteins

doi: 10.52601/bpr.2022.210032
Funds:  This work was supported by the Major State Basic Research Development Program (2019YFE0120600), the “Eastern Scholar” project supported by the Shanghai Municipal Education Commission, the Science and Technology Commission of Shanghai Municipality (STCSM) (18JC1420500, 20XD1425000 and 2019SHZDZX02). Figures are created with BioRender.com. We acknowledge the resources provided by this website.
More Information
  • Corresponding author: liulab@sioc.ac.cn (C. Liu)
  • Received Date: 30 July 2021
  • Accepted Date: 17 September 2021
  • Available Online: 17 March 2022
  • Publish Date: 28 February 2022
  • Protein amyloid fibrillation, a process of liquid to solid phase transition, is involved in the pathogenesis of a variety of human diseases. Several amyloid proteins including α-synuclein (α-syn), Tau, amyloid β (Aβ) protein, and TAR DNA-binding protein 43 kDa (TDP-43) form pathological fibrils and deposit in patient brains of different neurodegenerative diseases (NDs) such as Parkinson’s disease (PD), Alzheimer’s disease (AD) and Amyotrophic lateral sclerosis (ALS). Preparation and characterization of amyloid fibrils in vitro are essential for studying the molecular mechanism underlying the dynamic amyloid aggregation and its pathogenesis in diseases. In this protocol, we take PD-associated α-syn as an example, and describe amyloid protein purification and fibrillation approaches. We then introduce biochemical and biophysical characterization of amyloid fibrils by Thioflavin-T (ThT) fluorescence kinetics assay, transmission electron microscopy (TEM), atomic force microscopy (AFM) and multiple fibril stability measurement assays. The approaches described here are applicable to different amyloid proteins, and are of importance for further study on the structure determination of amyloid fibrils and their pathological function in cells and animal models.
  • loading
  • [1]
    Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K, Yoshida M, Hashizume Y, Oda T (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3): 602−611 doi: 10.1016/j.bbrc.2006.10.093
    [2]
    Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T (1998) Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol 152(4): 879−884
    [3]
    Chen X, de Silva HA, Pettenati MJ, Rao PN, St George-Hyslop P, Roses AD, Xia Y, Horsburgh K, Ueda K, Saitoh T (1995) The human NACP/alpha-synuclein gene: chromosome assignment to 4q21. 3-q22 and TaqI RFLP analysis. Genomics 26(2): 425−427
    [4]
    Forno LS, Norville RL (1976) Ultrastructure of Lewy bodies in the stellate ganglion. Acta Neuropathol 34(3): 183−197 doi: 10.1007/BF00688674
    [5]
    Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85(11): 4051−4055 doi: 10.1073/pnas.85.11.4051
    [6]
    Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H (2018) Cryo-EM structure of alpha-synuclein fibrils. eLife 7: e36402. https://doi.org/10.7554/eLife.36402
    [7]
    Hipp MS, Kasturi P, Hartl FU (2019) The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol 20(7): 421−435 doi: 10.1038/s41580-019-0101-y
    [8]
    Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT, Jr. (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418(6895): 291. https://doi.org/10.1038/418291a
    [9]
    Li Y, Zhao C, Luo F, Liu Z, Gui X, Luo Z, Zhang X, Li D, Liu C, Li X (2018) Amyloid fibril structure of alpha-synuclein determined by cryo-electron microscopy. Cell Res 28(9): 897−903 doi: 10.1038/s41422-018-0075-x
    [10]
    Liang J, Niu Q, Xu X, Luo Y, Zhou X, Deng Z, Wang Z (2009) Effective elimination of nucleic acids from bacterial protein samples for optimized blue native polyacrylamide gel electrophoresis. Electrophoresis 30(14): 2454−2459 doi: 10.1002/elps.200900026
    [11]
    Luk KC, Kehm V, Carroll J, Zhang B, O'Brien P, Trojanowski JQ, Lee VM (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109): 949−953 doi: 10.1126/science.1227157
    [12]
    Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Goncalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DA, Dawson VL, Ko HS, Dawson TM (2016) Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353(6307): aah3374. https://doi.org/10.1126/science.aah3374
    [13]
    Murphy MP, LeVine H, 3rd (2010) Alzheimer's disease and the amyloid-beta peptide. J Alzheimers Dis 19(1): 311−323 doi: 10.3233/JAD-2010-1221
    [14]
    Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castano-Diez D, Schweighauser G, Graff-Meyer A, Goldie KN, Sutterlin R, Huisman E, Ingrassia A, Gier Y, Rozemuller AJM, Wang J, Paepe A, Erny J, Staempfli A, Hoernschemeyer J, Grosseruschkamp F, Niedieker D, El-Mashtoly SF, Quadri M, Van IWFJ, Bonifati V, Gerwert K, Bohrmann B, Frank S, Britschgi M, Stahlberg H, Van de Berg WDJ, Lauer ME (2019) Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7): 1099−1109 doi: 10.1038/s41593-019-0423-2
    [15]
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645): 839−840 doi: 10.1038/42166
    [16]
    Tsigelny IF, Sharikov Y, Wrasidlo W, Gonzalez T, Desplats PA, Crews L, Spencer B, Masliah E (2012) Role of alpha-synuclein penetration into the membrane in the mechanisms of oligomer pore formation. FEBS J 279(6): 1000−1013 doi: 10.1111/j.1742-4658.2012.08489.x
    [17]
    Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T, Trojanowski JQ, Lee VM (1998) Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann Neurol 44(3): 415−422 doi: 10.1002/ana.410440324
    [18]
    Volles MJ, Lansbury PT, Jr. (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson's disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41(14): 4595−4602 doi: 10.1021/bi0121353
    [19]
    Watanabe I, Vachal E, Tomita T (1977) Dense core vesicles around the Lewy body in incidental Parkinson's disease: an electron microscopic study. Acta Neuropathol 39(2): 173−175 doi: 10.1007/BF00703325
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (437) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return