Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Zhang Qian, Chen Ziting, Sun Bo. Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective[J]. Biophysics Reports, 2021, 7(6): 475-489. doi: 10.52601/bpr.2021.210021
Citation: Zhang Qian, Chen Ziting, Sun Bo. Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective[J]. Biophysics Reports, 2021, 7(6): 475-489. doi: 10.52601/bpr.2021.210021

Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective

doi: 10.52601/bpr.2021.210021
Funds:  This work was supported by the National Key Research and Development Program of China (2017YFA0106700), the National Natural Science Foundation of China (32022048 and 22104088), the Natural Science Foundation of Shanghai (19ZR1434100), and the China Postdoctoral Science Foundation (2021M692053). We sincerely apologize to authors whose work could not be included in this manuscript due to the space limitation.
More Information
  • Corresponding author: sunbo@shanghaitech.edu.cn (B. Sun)
  • Received Date: 25 June 2021
  • Accepted Date: 11 November 2021
  • Available Online: 24 February 2022
  • Publish Date: 31 December 2021
  • Cas9 is an RNA-guided endonuclease from the type II CRISPR-Cas system that employs RNA–DNA base pairing to target and cleave foreign DNA in bacteria. Due to its robust and programmable activity, Cas9 has been repurposed as a revolutionary technology for wide-ranging biological and medical applications. A comprehensive understanding of Cas9 mechanisms at the molecular level would aid in its better usage as a genome tool. Over the past few years, single-molecule techniques, such as fluorescence resonance energy transfer, DNA curtains, magnetic tweezers, and optical tweezers, have been extensively applied to characterize the detailed molecular mechanisms of Cas9 proteins. These techniques allow researchers to monitor molecular dynamics and conformational changes, probe essential DNA–protein interactions, detect intermediate states, and distinguish heterogeneity along the reaction pathway, thus providing enriched functional and mechanistic perspectives. This review outlines the single-molecule techniques that have been utilized for the investigation of Cas9 proteins and discusses insights into the mechanisms of the widely used Streptococcus pyogenes (Sp) Cas9 revealed through these techniques.
  • loading
  • [1]
    Anders C, Niewoehner O, Duerst A, Jinek M (2014) Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513(7519): 569−573 doi: 10.1038/nature13579
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5): 288−290 doi: 10.1364/OL.11.000288
    Axelrod D (1989) Total internal reflection fluorescence microscopy. Methods Cell Biol 30: 245−270
    Bak SY, Jung Y, Park J, Sung K, Jang H-K, Bae S, Kim SK (2021) Quantitative assessment of engineered Cas9 variants for target specificity enhancement by single-molecule reaction pathway analysis. Nucleic Acids Res 49(19): 11312−11322 doi: 10.1093/nar/gkab858
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819): 1709−1712 doi: 10.1126/science.1138140
    Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41(15): 7429−7437 doi: 10.1093/nar/gkt520
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9): 930. https://doi.org/10.1103/PhysRevLett.56.930
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, Van Der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321(5891): 960−964 doi: 10.1126/science.1159689
    Bustamante CJ, Chemla YR, Liu S, Wang MD (2021) Optical tweezers in single-molecule biophysics. Nat Rev Methods Primers 1(1): 25. https://doi.org/10.1038/s43586-021-00021-6
    Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22(24): 3489−3496 doi: 10.1101/gad.1742908
    Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39(3): 428−441 doi: 10.1093/femsre/fuv023
    Charvin G, Strick T, Bensimon D, Croquette V (2005) Tracking topoisomerase activity at the single-molecule level. Annu Rev Biophys Biomol Struct 34: 201−219 doi: 10.1146/annurev.biophys.34.040204.144433
    Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81(4): 2378−2388 doi: 10.1016/S0006-3495(01)75884-5
    Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, Park J, Blackburn EH, Weissman JS, Qi LS (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155(7): 1479−1491 doi: 10.1016/j.cell.2013.12.001
    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017) Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550(7676): 407−410 doi: 10.1038/nature24268
    Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ (2018) Enhanced bacterial immunity and mammalian genome editing via RNA-polymerase-mediated dislodging of Cas9 from double-strand DNA breaks. Mol Cell 71(1): 42−55 doi: 10.1016/j.molcel.2018.06.005
    Cordes T, Moerner W, Orrit M, Sekatskii S, Faez S, Borri P, Goswami HP, Clark A, El-Khoury P, Mayr S (2015) Plasmonics, tracking and manipulating, and living cells: general discussion. Faraday Discuss 184: 451−473 doi: 10.1039/C5FD90093J
    Cuculis L, Abil Z, Zhao HM, Schroeder CM (2016) TALE proteins search DNA using a rotationally decoupled mechanism. Nat Chem Biol 12(10): 831−837 doi: 10.1038/nchembio.2152
    Cuculis L, Schroeder CM (2017) A single-molecule view of genome editing proteins: biophysical mechanisms for TALEs and CRISPR/Cas9. Annu Rev Chem Biomol Eng 8: 577−597 doi: 10.1146/annurev-chembioeng-060816-101603
    Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A (2017) A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci Adv 3(8): eaao0027. https://doi.org/10.1126/sciadv.aao0027
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340): 602−607 doi: 10.1038/nature09886
    Fazio T, Visnapuu M-L, Wind S, Greene EC (2008) DNA curtains and nanoscale curtain rods: high-throughput tools for single molecule imaging. Langmuir 24(18): 10524−10531 doi: 10.1021/la801762h
    Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368(6467): 113−119 doi: 10.1038/368113a0
    Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320): 67−71 doi: 10.1038/nature09523
    Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109(39): E2579−E2586 doi: 10.1073/pnas.1208507109
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL, Bassik MC (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159(3): 647−661 doi: 10.1016/j.cell.2014.09.029
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154(2): 442−451 doi: 10.1016/j.cell.2013.06.044
    Globyte V, Kim SH, Joo C (2018) Single-molecule view of small RNA–guided target search and recognition. Annu Rev Biophys 47: 569−593 doi: 10.1146/annurev-biophys-070317-032923
    Globyte V, Lee SH, Bae T, Kim JS, Joo C (2019) CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion. EMBO J 38(4): e99466. https://doi.org/10.15252/embj.201899466
    Gong S, Yu HH, Johnson KA, Taylor DW (2018) DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Rep 22(2): 359−371 doi: 10.1016/j.celrep.2017.12.041
    Gorman J, Fazio T, Wang F, Wind S, Greene EC (2010) Nanofabricated racks of aligned and anchored DNA substrates for single-molecule imaging. Langmuir 26(2): 1372−1379 doi: 10.1021/la902443e
    Greene EC, Wind S, Fazio T, Gorman J, Visnapuu M-L (2010) DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol 472: 293−315
    Gupta P, Zlatanova J, Tomschik M (2009) Nucleosome assembly depends on the torsion in the DNA molecule: a magnetic tweezers study. Biophys J 97(12): 3150−3157 doi: 10.1016/j.bpj.2009.09.032
    Hayes RP, Xiao Y, Ding F, van Erp PB, Rajashankar K, Bailey S, Wiedenheft B, Ke A (2016) Structural basis for promiscuous PAM recognition in type I-E Cascade from E. coli. Nature 530(7591): 499−503 doi: 10.1038/nature16995
    Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA (2015) Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519(7542): 199−202 doi: 10.1038/nature14245
    Hilton IB, D'ippolito AM, Vockley CM, Thakore PI, Crawford GE, Reddy TE, Gersbach CA (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33(5): 510−517 doi: 10.1038/nbt.3199
    Ivanov IE, Wright AV, Cofsky JC, Aris KDP, Doudna JA, Bryant Z (2020) Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc Natl Acad Sci USA 117(11): 5853−5860 doi: 10.1073/pnas.1913445117
    Jiang C, Lionberger TA, Wiener DM, Meyhofer E (2016a) Electromagnetic tweezers with independent force and torque control. Rev Sci Instrum 87(8): 084304. https://doi.org/10.1063/1.4960811
    Jiang F, Doudna JA (2017) CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 46: 505−529 doi: 10.1146/annurev-biophys-062215-010822
    Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA (2016b) Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 351(6275): 867−871 doi: 10.1126/science.aad8282
    Jiang F, Zhou K, Ma L, Gressel S, Doudna JA (2015) A Cas9–guide RNA complex preorganized for target DNA recognition. Science 348(6242): 1477−1481 doi: 10.1126/science.aab1452
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816−821 doi: 10.1126/science.1225829
    Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176): 1247997. https://doi.org/10.1126/science.1247997
    Jones DL, Leroy P, Unoson C, Fange D, Curic V, Lawson MJ, Elf J (2017) Kinetics of dCas9 target search in Escherichia coli. Science 357(6358): 1420−1424 doi: 10.1126/science.aah7084
    Jore MM, Lundgren M, Van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul Ü, Wurm R, Wagner R (2011) Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol 18(5): 529−536 doi: 10.1038/nsmb.2019
    Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10(5): 841−851 doi: 10.4161/rna.24203
    Knott GJ, Doudna JA (2018) CRISPR-Cas guides the future of genetic engineering. Science 361(6405): 866−869 doi: 10.1126/science.aat5011
    Konermann S, Brigham MD, Trevino AE, Hsu PD, Heidenreich M, Cong L, Platt RJ, Scott DA, Church GM, Zhang F (2013) Optical control of mammalian endogenous transcription and epigenetic states. Nature 500(7463): 472−476 doi: 10.1038/nature12466
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517(7536): 583−588 doi: 10.1038/nature14136
    Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37: 67−78 doi: 10.1016/j.mib.2017.05.008
    Leake MC (2013) The physics of life: one molecule at a time. Philos Trans R Soc Lond B Biol Sci 368(1611): 20120248. https://doi.org/10.1098/rstb.2012.0248
    Lim Y, Bak SY, Sung K, Jeong E, Lee SH, Kim JS, Bae S, Kim SK (2016) Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Nat Commun 7(1): 13350. https://doi.org/10.1038/ncomms13350
    Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y (2017) Two distant catalytic sites are responsible for C2c2 RNase activities. Cell 168(1-2): 121−134 doi: 10.1016/j.cell.2016.12.031
    Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112(10): 3002−3007 doi: 10.1073/pnas.1420024112
    Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016a) CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J Cell Biol 214(5): 529−537 doi: 10.1083/jcb.201604115
    Ma HH, Tu LC, Naseri A, Huisman M, Zhang SJ, Grunwald D, Pederson T (2016b) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34(5): 528−530 doi: 10.1038/nbt.3526
    Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA–guided activation of endogenous human genes. Nat Methods 10(10): 977−979 doi: 10.1038/nmeth.2598
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2): 67−83 doi: 10.1038/s41579-019-0299-x
    Manosas M, Meglio A, Spiering MM, Ding F, Benkovic SJ, Barre F-X, Saleh OA, Allemand JF, Bensimon D, Croquette V (2010) Magnetic tweezers for the study of DNA tracking motors. Methods Enzymol 475: 297−320
    Maragò O, Gucciardi P, Jones P (2010) Photonic force microscopy: from femtonewton force sensing to ultra-sensitive spectroscopy. In: Bhushan B (eds). Scanning Probe Microscopy in Nanoscience and Nanotechnology. Springer. pp : 23−56
    Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909): 1843−1845 doi: 10.1126/science.1165771
    Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11(3): 181−190 doi: 10.1038/nrg2749
    Mullally G, Van Aelst K, Naqvi MM, Diffin FM, Karvelis T, Gasiunas G, Siksnys V, Szczelkun MD (2020) 5’ modifications to CRISPR–Cas9 gRNA can change the dynamics and size of R-loops and inhibit DNA cleavage. Nucleic Acids Res 48(12): 6811−6823 doi: 10.1093/nar/gkaa477
    Newton MD, Taylor BJ, Driessen RPC, Roos L, Cvetesic N, Allyjaun S, Lenhard B, Cuomo ME, Rueda DS (2019) DNA stretching induces Cas9 off-target activity. Nat Struct Mol Biol 26(3): 185−192 doi: 10.1038/s41594-019-0188-z
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R, Zhang F, Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156(5): 935−949 doi: 10.1016/j.cell.2014.02.001
    Okafor IC, Singh D, Wang Y, Jung M, Wang H, Mallon J, Bailey S, Lee JK, Ha T (2019) Single molecule analysis of effects of non-canonical guide RNAs and specificity-enhancing mutations on Cas9-induced DNA unwinding. Nucleic Acids Res 47(22): 11880−11888
    Osuka S, Isomura K, Kajimoto S, Komori T, Nishimasu H, Shima T, Nureki O, Uemura S (2018) Real-time observation of flexible domain movements in CRISPR-Cas9. EMBO J 37(10): e96941. https://doi.org/10.15252/embj.201796941
    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW (2013) RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10(10): 973−976 doi: 10.1038/nmeth.2600
    Polimeno P, Magazzu A, Iati MA, Patti F, Saija R, Boschi CDE, Donato MG, Gucciardi PG, Jones PH, Volpe G (2018) Optical tweezers and their applications. J Quant Spectr Radiat Transfer 218: 131−150 doi: 10.1016/j.jqsrt.2018.07.013
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5): 1173−1183 doi: 10.1016/j.cell.2013.02.022
    Redding S, Sternberg SH, Marshall M, Gibb B, Bhat P, Guegler CK, Wiedenheft B, Doudna JA, Greene EC (2015) Surveillance and processing of foreign DNA by the Escherichia coli CRISPR-Cas system. Cell 163(4): 854−865 doi: 10.1016/j.cell.2015.10.003
    Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6): 507−516 doi: 10.1038/nmeth.1208
    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39(21): 9275−9282 doi: 10.1093/nar/gkr606
    Sarkar R, Rybenkov VV (2016) A guide to magnetic tweezers and their applications. Front Phys 4: 48. https://doi.org/10.3389/fphy.2016.00048
    Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2): 182−195 doi: 10.1016/j.jsb.2005.06.002
    Schauer GD, Spenkelink LM, Lewis JS, Yurieva O, Mueller SH, van Oijen AM, O’Donnell ME (2020) Replisome bypass of a protein-based R-loop block by Pif1. Proc Natl Acad Sci USA 117(48): 30354−30361 doi: 10.1073/pnas.2020189117
    Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7(9): 730−734 doi: 10.1038/78948
    Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T, Nureki O (2017) Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nat Commun 8(1): 1430. https://doi.org/10.1038/s41467-017-01466-8
    Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, Lambowitz AM, Fire AZ (2016) Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase–Cas1 fusion protein. Science 351(6276): aad4234. https://doi.org/10.1126/science.aad4234
    Singh D, Ha T (2018) Understanding the molecular mechanisms of the CRISPR toolbox using single molecule approaches. ACS Chem Biol 13(3): 516−526 doi: 10.1021/acschembio.7b00905
    Singh D, Sternberg SH, Fei JY, Doudna JA, Ha T (2016) Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun 7(1): 12778. https://doi.org/10.1038/ncomms12778
    Singh D, Wang Y, Mallon J, Yang O, Fei J, Poddar A, Ceylan D, Bailey S, Ha T (2018) Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Nat Struct Mol Biol 25(4): 347−354 doi: 10.1038/s41594-018-0051-7
    Smith SB, Cui Y, Bustamante C (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271(5250): 795−799 doi: 10.1126/science.271.5250.795
    Staals RH, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, Van Duijn E, Barendregt A, Vlot M, Koehorst JJ, Sakamoto K (2013) Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol Cell 52(1): 135−145 doi: 10.1016/j.molcel.2013.09.013
    Staals RH, Zhu Y, Taylor DW, Kornfeld JE, Sharma K, Barendregt A, Koehorst JJ, Vlot M, Neupane N, Varossieau K (2014) RNA targeting by the type III-A CRISPR-Cas Csm complex of Thermus thermophilus. Mol Cell 56(4): 518−530 doi: 10.1016/j.molcel.2014.10.005
    Sternberg SH, LaFrance B, Kaplan M, Doudna JA (2015) Conformational control of DNA target cleavage by CRISPR-Cas9. Nature 527(7576): 110−113 doi: 10.1038/nature15544
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490): 62−67 doi: 10.1038/nature13011
    Sternberg SH, Richter H, Charpentier E, Qimron U (2016) Adaptation in CRISPR-Cas systems. Mol Cell 61(6): 797−808 doi: 10.1016/j.molcel.2016.01.030
    Strick T, Allemand J-F, Bensimon D, Croquette V (1998) Behavior of supercoiled DNA. Biophys J 74(4): 2016−2028 doi: 10.1016/S0006-3495(98)77908-1
    Strick TR, Allemand J-F, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271(5257): 1835−1837 doi: 10.1126/science.271.5257.1835
    Sun B (2019) Rescuing replication from barriers: mechanistic insights from single-molecule studies. Mol Cell Biol 39(10): e00576−18 doi: 10.1128/MCB.00576-18
    Sun B, Wang MD (2016) Single-molecule perspectives on helicase mechanisms and functions. Crit Rev Biochem Mol Biol 51(1): 15−25 doi: 10.3109/10409238.2015.1102195
    Sung K, Park J, Kim Y, Lee NK, Kim SK (2018) Target specificity of Cas9 nuclease via DNA rearrangement regulated by the REC2 domain. J Am Chem Soc 140(25): 7778−7781 doi: 10.1021/jacs.8b03102
    Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and cascade effector complexes. Proc Natl Acad Sci USA 111(27): 9798−9803 doi: 10.1073/pnas.1402597111
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159(3): 635−646 doi: 10.1016/j.cell.2014.09.039
    Thakore PI, D’ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12(12): 1143−1149 doi: 10.1038/nmeth.3630
    Vrtis KB, Dewar JM, Chistol G, Wu RA, Graham TG, Walter JC (2021) Single-strand DNA breaks cause replisome disassembly. Mol Cell 81(6): 1309−1318 doi: 10.1016/j.molcel.2020.12.039
    Wang AS, Chen LC, Wu RA, Hao Y, McSwiggen DT, Heckert AB, Richardson CD, Gowen BG, Kazane KR, Vu JT (2020) The histone chaperone FACT induces Cas9 multi-turnover behavior and modifies genome manipulation in human cells. Mol Cell 79(2): 221−233 doi: 10.1016/j.molcel.2020.06.014
    Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, Block SM (1998) Force and velocity measured for single molecules of RNA polymerase. Science 282(5390): 902−907 doi: 10.1126/science.282.5390.902
    Wang Y, Mallon J, Wang H, Singh D, Jo MH, Hua B, Bailey S, Ha T (2021) Real-time observation of Cas9 postcatalytic domain motions. Proc Natl Acad Sci USA 118(2): e2010650118. https://doi.org/10.1073/pnas.2010650118
    Wei Y, Terns RM, Terns MP (2015) Cas9 function and host genome sampling in Type II-A CRISPR–Cas adaptation. Genes Dev 29(4): 356−361 doi: 10.1101/gad.257550.114
    Whinn KS, van Oijen AM, Ghodke H (2019) Spy-ing on Cas9: single-molecule tools reveal the enzymology of Cas9. Curr Opin Biomed Eng 12: 25−33 doi: 10.1016/j.cobme.2019.08.013
    Yang M, Peng S, Sun R, Lin J, Wang N, Chen C (2018) The conformational dynamics of Cas9 governing DNA cleavage are revealed by single-molecule FRET. Cell Rep 22(2): 372−382 doi: 10.1016/j.celrep.2017.12.048
    Yang M, Sun R, Deng P, Yang Y, Wang W, Liu J-JG, Chen C (2021) Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Chem Sci 12(38): 12776−12784 doi: 10.1039/D1SC02633J
    Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J (2018) The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex. Nucleic Acids Res 46(1): 350−361 doi: 10.1093/nar/gkx1117
    Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Quart Rev Biophys 52: e6. https://doi.org/10.1017/S0033583519000052
    Zhang Q, Chen Z, Wang F, Zhang S, Chen H, Gu X, Wen F, Jin J, Zhang X, Huang X, Shen B, Sun B (2021) Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Nucleic Acids Res 49(21): 12433−12444 doi: 10.1093/nar/gkab1139
    Zhang Q, Wen F, Zhang S, Jin J, Bi L, Lu Y, Li M, Xi XG, Huang X, Shen B, Sun B (2019) The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. Sci Adv 5(11): eaaw9807. https://doi.org/10.1126/sciadv.aaw9807
    Zhang S, Zhang Q, Hou XM, Guo L, Wang F, Bi L, Zhang X, Li HH, Wen F, Xi XG, Huang X, Shen B, Sun B (2020) Dynamics of Staphylococcus aureus Cas9 in DNA target association and dissociation. EMBO Rep 21(10): e50184. https://doi.org/10.15252/embr.202050184
    Zhang X, Ma L, Zhang Y (2013a) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86(3): 367−383
    Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013b) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4): 488−503 doi: 10.1016/j.molcel.2013.05.001
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (648) PDF downloads(53) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint