Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Aryal Chinta Mani, Tyoe Owen, Diao Jiajie. Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy[J]. Biophysics Reports, 2021, 7(6): 437-448. doi: 10.52601/bpr.2021.210020
Citation: Aryal Chinta Mani, Tyoe Owen, Diao Jiajie. Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy[J]. Biophysics Reports, 2021, 7(6): 437-448. doi: 10.52601/bpr.2021.210020

Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy

doi: 10.52601/bpr.2021.210020
Funds:  This work was supported by the National Institute of Heath (R35GM128837, R21AG061600, R01NS121077) to Jiajie Diao.
More Information
  • Corresponding author: jiajie.diao@uc.edu
  • Received Date: 23 June 2021
  • Accepted Date: 30 July 2021
  • Available Online: 21 January 2022
  • Publish Date: 31 December 2021
  • Single-molecule methods have been applied to study the mechanisms of many biophysical systems that occur on the nanometer scale. To probe the dynamics of such systems including vesicle docking, tethering, fusion, trafficking, protein-membrane interactions, etc., and to obtain reproducible experimental data; proper methodology and framework are crucial. Here, we address this need by developing a protocol for immobilization of vesicles composed of synthetic lipids and measurement using total internal reflection fluorescence (TIRF) microscopy. Furthermore, we demonstrate applications including vesicle clustering mediated by proteins such as alpha-Synuclein (αSyn) and the influence of external ions by using TIRF microscopy. Moreover, we use this method to quantify the dependence of lipid composition and charge on vesicle clustering mediated by αSyn which is based on the methods previously reported.
  • loading
  • [1]
    Aryal CM, Bui NN, Khadka NK, Song L, Pan J (2020) The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochim Biophys Acta Biomembr 1862(10): 183397. https://doi.org/10.1016/j.bbamem.2020.183397 doi: 10.1016/j.bbamem.2020.183397
    [2]
    Becherer U, Pasche M, Nofal S, Hof D, Matti U, Rettig J (2007) Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells. PLoS One 2(6): e505. https://doi.org/10.1371/journal.pone.0000505 doi: 10.1371/journal.pone.0000505
    [3]
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153−166 doi: 10.1016/S0092-8674(03)01079-1
    [4]
    Bu B, Tong X, Li D, Hu Y, He W, Zhao C, Hu R, Li X, Shao Y, Liu C, Zhao Q, Ji B, Diao J (2017) N-terminal acetylation preserves α-Synuclein from oligomerization by blocking intermolecular hydrogen bonds. ACS Chem Neuros 8: 2145−2151 doi: 10.1021/acschemneuro.7b00250
    [5]
    Cai B, Liu J, Zhao Y, Xu X, Bu B, Li D, Zhang L, Dong W, Ji B, Diao J (2020) Single vesicle imaging quantifies calcium’s regulation of nanoscale vesicle clustering medited by alpha-synuclein. Microsyst Nanoeng 6: 38. https://doi.org/10.1038/s41378-020-0147-1 doi: 10.1038/s41378-020-0147-1
    [6]
    Cai B, Yu L, Sharum SR, Zhang K, Diao J (2019) Single-vesicles measurement of protein-induced membrane tethering. Colloids Surf B: Biointerfaces 177: 267−273 doi: 10.1016/j.colsurfb.2019.02.004
    [7]
    Chandradoss SD, Haagsma AC, Lee YK, Hwang JH, Nam JM, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86: e50549. https://doi.org/10.3791/50549 doi: 10.3791/50549
    [8]
    Crowe M, Lai Y, Wang Y, Lu J, Zhao M, Tian Z, Long J, Zhang P, Diao J (2017) A proteoliposome method for assessing nanotoxicity on synaptic fusion and membrane integrity. Small Methods 1: 1700207. https://doi.org/10.1002/smtd.201700207 doi: 10.1002/smtd.201700207
    [9]
    Deniz AA, Mukhopadhyay S, Lemke EA (2007) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5: 15−45
    [10]
    Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Südhof TC, Brunger AT (2013) Native a-synuclein induces clustering of synaptic vesicles mimics via binding to phsopholipids and synaptobrevin-2/VAMP2. eLife 2: e00592. https://doi.org/10.7554/eLife.00592 doi: 10.7554/eLife.00592
    [11]
    Diao J, Ishitsuka Y, Lee H, Joo C, Su Z, Syed S, Shin YK, Yoon TY, Ha T (2012) A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 7: 921−934 doi: 10.1038/nprot.2012.020
    [12]
    Diao J, Yoon TY, Su Z, Shin YK, Ha T (2009) C2AB: a molecular glue for lipid vesicles with a negatively charged surface. Langmuir 25: 7177−7180 doi: 10.1021/la901676e
    [13]
    Du Y, Lai Y, Liu JY, Diao J (2021) Epigenetic quantification of DNA 5-Hydroxymethylcytosine using DNA hybridization-based single-molecule immunofluorescent imaging. Small Methods 5: 2100061. https://doi.org/10.1002/smtd.202100061 doi: 10.1002/smtd.202100061
    [14]
    Du Y, Wang Y, Hu X, Liu J, Diao J (2020) Single-molecule quantification of 5-methylcytosine and 5-hydroxymethylcytosine in cancer genome. View 1: e9. https://doi.org/10.1002/viw2.9 doi: 10.1002/viw2.9
    [15]
    Eliezer D, Kutluay E, Bussell Jr R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. JMol Biol 307: 1061−1073 doi: 10.1006/jmbi.2001.4538
    [16]
    Esposito G, Clara FA, Verstreken P (2011) Synaptic vesicle trafficking and Parkinson's disease. Dev Neurobio 72: 134−144
    [17]
    Ferreon ACM, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci USA 106: 5645−5650 doi: 10.1073/pnas.0809232106
    [18]
    Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 50: 1−12 doi: 10.1002/0471142956.cy1218s50
    [19]
    Fox CB, Wayment JR, Myers GA, Endicott SK, Harris JM (2009) Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers. Anal Chem 81: 5130−5138 doi: 10.1021/ac9007682
    [20]
    Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nate Commun 5: 3827. https://doi.org/10.1038/ncomms4827 doi: 10.1038/ncomms4827
    [21]
    Gong J, Lai Y, Li X, Wang M, Leitz J, Hu Y, Zhang Y, Choi UB, Cipriano D, Pfuetzner RA, Südhof TC, Yang X, Brunger AT, Diao J (2016) C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc Natl Acad Sci USA 113: E7590−E7599 doi: 10.1073/pnas.1609917113
    [22]
    Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419: 638−641 doi: 10.1038/nature01083
    [23]
    Hellstrand E, Grey M, Ainalem ML, Ankner J, Forsyth VT, Fragneto G, Haertlein M, Dauvergne MT, Nilsson H, Brundin P, Linse S, Nylander T, Sparr E (2013) Adsorption of α-synuclein to supported lipid bilayers: positioning and role of electrostatics. ACS Chem Neurosci 4: 1339−1351 doi: 10.1021/cn400066t
    [24]
    Hu R, Diao J, Li J, Tang Z, Li X, Leitz J, Long J, Liu J, Yu D, Zhao Q (2016) Intrinsic and membrane-facilitated α-synuclein oligomerization revealed by label-free detection through solid-state nanopores. Sci Rep 6: 20776. https://doi.org/10.1038/srep20776 doi: 10.1038/srep20776
    [25]
    Hu Y, Lai Y, Wang Y, Zhao M, Zhang Y, Crowe M, Tian Z, Long J, Diao J (2017) SNARE-reconstituted liposomes as controllable zeptoliter nanoreactors for macromolecules. Adv Biosyst 1: e1600018. https://doi.org/10.1002/adbi.201600018 doi: 10.1002/adbi.201600018
    [26]
    Hu Y, Tian Z, Diao J (2019) Single-molecule fluorescence measurement of SNARE-mediated vesicle fusion. Methods Mol Biol 1860: 335−344
    [27]
    Jiang Y, Huang S (2017) Direct visualization and quantification of the actin nucleation and elongation events in vitro by TIRF microscopy. Bio Protoc 7: e2146. https://doi.org/10.21769/BioProtoc.2146 doi: 10.21769/BioProtoc.2146
    [28]
    Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) Alpha-synuclein membrane interactions and lipid specificity. J Boil Chem 275: 34328−34334 doi: 10.1074/jbc.M004345200
    [29]
    Joo C, Ha T (2012a) Preparing sample chambers for single-molecule FRET. Cold Spring Harb Protoc 2012: 1104−1108
    [30]
    Joo C, Ha T (2012b) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012: pdb.top072058. https://doi.org/10.1101/pdb.top072058 doi: 10.1101/pdb.top072058
    [31]
    Kaur U, Lee JC (2021) Membrane interaction of α-synuclein probed by neutrons and photons. Acc Chem Res 54: 302−310 doi: 10.1021/acs.accounts.0c00453
    [32]
    Khadka NK, Aryal CM, Pan J (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega 3: 17828−17834 doi: 10.1021/acsomega.8b02260
    [33]
    Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L (2021) Mechanical properties of the high cholesterol-containing membrane: an AFM study. Biochem Biophys Acta Biomembr 1863: 183625. https://doi.org/10.1016/j.bbamem.2021.183625 doi: 10.1016/j.bbamem.2021.183625
    [34]
    Kubo Si, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y, Edwards RH, Fortin DL (2005) A combinatorial code for the interaction of alpha-synuclein with membranes. J Biol Chem 280: 31664−31672 doi: 10.1074/jbc.M504894200
    [35]
    Lai Y, Choi UB, Zhang Y, Zhao M, Pfuetzner RA, Wang AL, Diao J, Brunger AT (2016) N-terminal domain of complexin independently activates calcium-triggered fusion. Proc Natl Acad Sci USA 113: E4698−E4707 doi: 10.1073/pnas.1604348113
    [36]
    Lai Y, Kim S, Varkey J, Lou X, Song JK, Diao J, Langen R, Shin YK (2014) Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 53: 3889−3896 doi: 10.1021/bi5002536
    [37]
    Lamichhane R, Solem A, Black W, Rueda D (2010) Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods 52: 192−200 doi: 10.1016/j.ymeth.2010.06.010
    [38]
    Lautenschlager J, Kaminski CF, Schierle GSK (2017) α-Synuclein-regulator of exocytosis, endocytosis, or both? Trends Cell Biol 27: 468-479
    [39]
    Li X, Tong X, Lu W, Yu D, Diao J, Zhao Q (2019) Label-free detection of early oligomerization of α-synuclein and its mutants A30P/E46K through solid-state nanopores. Nanoscale 11: 6480−6488 doi: 10.1039/C9NR00023B
    [40]
    Liu J, Bu B, Crowe M, Li D, Diao J, Ji B (2021) Membrane packing defects in synaptic vesicles recruit complexin and synuclein. Phys Chem Chem Phys 23: 2117−2125 doi: 10.1039/D0CP03546G
    [41]
    Madine J, Hughes E, Doig AJ, Middleton DA (2009) The effects of α-synuclein on phospholipid vesicle integrity: a study using 31P NMR and electron microscopy. Mol Membr Biol 25: 518−527
    [42]
    Man WK, Tahirbegi B, Vrettas MD, Preet S, Ying L, Vendruscolo M, De Simone A, Fusco G (2021) The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nat Commun 12: 927. https://doi.org/10.1038/s41467-021-21027-4 doi: 10.1038/s41467-021-21027-4
    [43]
    Ma DF, Xu CH, Hou WQ, Zhao CY, Ma JB, Huang XY, Jia Q, Ma L, Diao J, Liu C, Li M, Lu Y (2019) Detecting single-molecule dynamics on lipid membranes with quenchers-in-a-liposome FRET. Angew Chem Int Ed Engl 58: 5577−5581 doi: 10.1002/anie.201813888
    [44]
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123: 3621−3628 doi: 10.1242/jcs.056218
    [45]
    Middleton ER, Rhoades E (2010) Effects of curvature and composition α-synuclein binding to lipid vesicles. Biophys J 99: 2279−2288 doi: 10.1016/j.bpj.2010.07.056
    [46]
    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20: 3214−3220 doi: 10.1523/JNEUROSCI.20-09-03214.2000
    [47]
    Pan J, Dalzini A, Khadka NK, Aryal CM, Song L (2018) Lipid extraction by α-synuclein generates semi-transmembrane defects and lipoprotein nanoparticles. ACS Omega 8: 9586−9597
    [48]
    Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L (2017) Membrane disruption mechanism of a prion peptide (106–126) investigated by atomic force microscopy, Raman and electron paramagnetic resonance spectroscopy. J Phys Chem B 121: 5058−5071 doi: 10.1021/acs.jpcb.7b02772
    [49]
    Pfefferkorn CM, Jiang Z, C Lee JC (2012) Biophysics of α-synuclein membrane interactions. Biochem Biophys Acta 1818: 162−171 doi: 10.1016/j.bbamem.2011.07.032
    [50]
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin CR, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045−2047 doi: 10.1126/science.276.5321.2045
    [51]
    Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90: 4692−4700 doi: 10.1529/biophysj.105.079251
    [52]
    Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM (2011) Specificity and kinetics of α-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 286: 13023−13032 doi: 10.1074/jbc.M110.204776
    [53]
    Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewis bodies. Nature 388: 839−840 doi: 10.1038/42166
    [54]
    Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Prespect Med 4: a009399. https://doi.org/10.1101/cshperspect.a009399 doi: 10.1101/cshperspect.a009399
    [55]
    Steyer JA, Almers W (2001) A real-time view of within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2: 268−275 doi: 10.1038/35067069
    [56]
    Sun J, Wang L, Bao H, Premi S, Das U, Chapman ER, Roy S (2019) Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci USA 116: 11113−11115 doi: 10.1073/pnas.1903049116
    [57]
    Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Bru gger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127: 831−846 doi: 10.1016/j.cell.2006.10.030
    [58]
    Tengholm A, Teruel MN, Meyer T (2003) Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Sci STKE 2003: pl4
    [59]
    Tian Z, Gong J, Crowe M, Lei M, Li D, Ji B, Diao J (2019) Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 73: 92−100 doi: 10.1016/j.plipres.2019.01.001
    [60]
    West A, Brummel BE, Braun AR, Rhoades E, Sachs JN (2016) Membrane remodeling and mechanics: experiments and simulations of α-Synuclein. Biochem Biophys Acta 1858: 1594−1609 doi: 10.1016/j.bbamem.2016.03.012
    [61]
    Wang C, Zhao C, Li D, Tian Z, Lai Y, Diao J, Liu C (2016) Versitile structures of α-synuclein. Front Mol Neurosci 9: 48. https://doi.org/10.3389/fnmol.2016.00048 doi: 10.3389/fnmol.2016.00048
    [62]
    Wang Z, Fan H, Hu X, Khamo J, Diao J, Zhang K, Pogorelov TV (2019) Coaction of electrostatic and hydrophobic interactions: dynamic constraints on disordered TrkA juxtamembrane domain. J Phys Chem B 123: 10709−10717 doi: 10.1021/acs.jpcb.9b09352
    [63]
    Wu K, Li D, Xiu P, Ji B, Diao J (2020) O-GlcNAcylation inhibits the oligomerization of alpha-synuclein by declining intermolecular hydrogen bonds through a steric effect. Phys Biol 18: 016002. https://doi.org/10.1088/1478-3975/abb6dc doi: 10.1088/1478-3975/abb6dc
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (595) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return