Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Aryal Chinta Mani, Tyoe Owen, Diao Jiajie. Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy[J]. Biophysics Reports, 2021, 7(6): 437-448. doi: 10.52601/bpr.2021.210020
Citation: Aryal Chinta Mani, Tyoe Owen, Diao Jiajie. Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy[J]. Biophysics Reports, 2021, 7(6): 437-448. doi: 10.52601/bpr.2021.210020

Lipid species dependent vesicles clustering caused by alpha-synuclein as revealed by single-vesicle imaging with total internal reflection fluorescence microscopy

doi: 10.52601/bpr.2021.210020
Funds:  This work was supported by the National Institute of Heath (R35GM128837, R21AG061600, R01NS121077) to Jiajie Diao.
More Information
  • Corresponding author: jiajie.diao@uc.edu
  • Received Date: 23 June 2021
  • Accepted Date: 30 July 2021
  • Available Online: 21 January 2022
  • Publish Date: 31 December 2021
  • Single-molecule methods have been applied to study the mechanisms of many biophysical systems that occur on the nanometer scale. To probe the dynamics of such systems including vesicle docking, tethering, fusion, trafficking, protein-membrane interactions, etc., and to obtain reproducible experimental data; proper methodology and framework are crucial. Here, we address this need by developing a protocol for immobilization of vesicles composed of synthetic lipids and measurement using total internal reflection fluorescence (TIRF) microscopy. Furthermore, we demonstrate applications including vesicle clustering mediated by proteins such as alpha-Synuclein (αSyn) and the influence of external ions by using TIRF microscopy. Moreover, we use this method to quantify the dependence of lipid composition and charge on vesicle clustering mediated by αSyn which is based on the methods previously reported.
  • loading
  • [1]
    Aryal CM, Bui NN, Khadka NK, Song L, Pan J (2020) The helix 0 of endophilin modifies membrane material properties and induces local curvature. Biochim Biophys Acta Biomembr 1862(10): 183397. https://doi.org/10.1016/j.bbamem.2020.183397 doi: 10.1016/j.bbamem.2020.183397
    Becherer U, Pasche M, Nofal S, Hof D, Matti U, Rettig J (2007) Quantifying exocytosis by combination of membrane capacitance measurements and total internal reflection fluorescence microscopy in chromaffin cells. PLoS One 2(6): e505. https://doi.org/10.1371/journal.pone.0000505 doi: 10.1371/journal.pone.0000505
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116: 153−166 doi: 10.1016/S0092-8674(03)01079-1
    Bu B, Tong X, Li D, Hu Y, He W, Zhao C, Hu R, Li X, Shao Y, Liu C, Zhao Q, Ji B, Diao J (2017) N-terminal acetylation preserves α-Synuclein from oligomerization by blocking intermolecular hydrogen bonds. ACS Chem Neuros 8: 2145−2151 doi: 10.1021/acschemneuro.7b00250
    Cai B, Liu J, Zhao Y, Xu X, Bu B, Li D, Zhang L, Dong W, Ji B, Diao J (2020) Single vesicle imaging quantifies calcium’s regulation of nanoscale vesicle clustering medited by alpha-synuclein. Microsyst Nanoeng 6: 38. https://doi.org/10.1038/s41378-020-0147-1 doi: 10.1038/s41378-020-0147-1
    Cai B, Yu L, Sharum SR, Zhang K, Diao J (2019) Single-vesicles measurement of protein-induced membrane tethering. Colloids Surf B: Biointerfaces 177: 267−273 doi: 10.1016/j.colsurfb.2019.02.004
    Chandradoss SD, Haagsma AC, Lee YK, Hwang JH, Nam JM, Joo C (2014) Surface passivation for single-molecule protein studies. J Vis Exp 86: e50549. https://doi.org/10.3791/50549 doi: 10.3791/50549
    Crowe M, Lai Y, Wang Y, Lu J, Zhao M, Tian Z, Long J, Zhang P, Diao J (2017) A proteoliposome method for assessing nanotoxicity on synaptic fusion and membrane integrity. Small Methods 1: 1700207. https://doi.org/10.1002/smtd.201700207 doi: 10.1002/smtd.201700207
    Deniz AA, Mukhopadhyay S, Lemke EA (2007) Single-molecule biophysics: at the interface of biology, physics and chemistry. J R Soc Interface 5: 15−45
    Diao J, Burré J, Vivona S, Cipriano DJ, Sharma M, Kyoung M, Südhof TC, Brunger AT (2013) Native a-synuclein induces clustering of synaptic vesicles mimics via binding to phsopholipids and synaptobrevin-2/VAMP2. eLife 2: e00592. https://doi.org/10.7554/eLife.00592 doi: 10.7554/eLife.00592
    Diao J, Ishitsuka Y, Lee H, Joo C, Su Z, Syed S, Shin YK, Yoon TY, Ha T (2012) A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 7: 921−934 doi: 10.1038/nprot.2012.020
    Diao J, Yoon TY, Su Z, Shin YK, Ha T (2009) C2AB: a molecular glue for lipid vesicles with a negatively charged surface. Langmuir 25: 7177−7180 doi: 10.1021/la901676e
    Du Y, Lai Y, Liu JY, Diao J (2021) Epigenetic quantification of DNA 5-Hydroxymethylcytosine using DNA hybridization-based single-molecule immunofluorescent imaging. Small Methods 5: 2100061. https://doi.org/10.1002/smtd.202100061 doi: 10.1002/smtd.202100061
    Du Y, Wang Y, Hu X, Liu J, Diao J (2020) Single-molecule quantification of 5-methylcytosine and 5-hydroxymethylcytosine in cancer genome. View 1: e9. https://doi.org/10.1002/viw2.9 doi: 10.1002/viw2.9
    Eliezer D, Kutluay E, Bussell Jr R, Browne G (2001) Conformational properties of alpha-synuclein in its free and lipid-associated states. JMol Biol 307: 1061−1073 doi: 10.1006/jmbi.2001.4538
    Esposito G, Clara FA, Verstreken P (2011) Synaptic vesicle trafficking and Parkinson's disease. Dev Neurobio 72: 134−144
    Ferreon ACM, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci USA 106: 5645−5650 doi: 10.1073/pnas.0809232106
    Fish KN (2009) Total internal reflection fluorescence (TIRF) microscopy. Curr Protoc Cytom 50: 1−12 doi: 10.1002/0471142956.cy1218s50
    Fox CB, Wayment JR, Myers GA, Endicott SK, Harris JM (2009) Single-molecule fluorescence imaging of peptide binding to supported lipid bilayers. Anal Chem 81: 5130−5138 doi: 10.1021/ac9007682
    Fusco G, De Simone A, Gopinath T, Vostrikov V, Vendruscolo M, Dobson CM, Veglia G (2014) Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nate Commun 5: 3827. https://doi.org/10.1038/ncomms4827 doi: 10.1038/ncomms4827
    Gong J, Lai Y, Li X, Wang M, Leitz J, Hu Y, Zhang Y, Choi UB, Cipriano D, Pfuetzner RA, Südhof TC, Yang X, Brunger AT, Diao J (2016) C-terminal domain of mammalian complexin-1 localizes to highly curved membranes. Proc Natl Acad Sci USA 113: E7590−E7599 doi: 10.1073/pnas.1609917113
    Ha T, Rasnik I, Cheng W, Babcock HP, Gauss GH, Lohman TM, Chu S (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419: 638−641 doi: 10.1038/nature01083
    Hellstrand E, Grey M, Ainalem ML, Ankner J, Forsyth VT, Fragneto G, Haertlein M, Dauvergne MT, Nilsson H, Brundin P, Linse S, Nylander T, Sparr E (2013) Adsorption of α-synuclein to supported lipid bilayers: positioning and role of electrostatics. ACS Chem Neurosci 4: 1339−1351 doi: 10.1021/cn400066t
    Hu R, Diao J, Li J, Tang Z, Li X, Leitz J, Long J, Liu J, Yu D, Zhao Q (2016) Intrinsic and membrane-facilitated α-synuclein oligomerization revealed by label-free detection through solid-state nanopores. Sci Rep 6: 20776. https://doi.org/10.1038/srep20776 doi: 10.1038/srep20776
    Hu Y, Lai Y, Wang Y, Zhao M, Zhang Y, Crowe M, Tian Z, Long J, Diao J (2017) SNARE-reconstituted liposomes as controllable zeptoliter nanoreactors for macromolecules. Adv Biosyst 1: e1600018. https://doi.org/10.1002/adbi.201600018 doi: 10.1002/adbi.201600018
    Hu Y, Tian Z, Diao J (2019) Single-molecule fluorescence measurement of SNARE-mediated vesicle fusion. Methods Mol Biol 1860: 335−344
    Jiang Y, Huang S (2017) Direct visualization and quantification of the actin nucleation and elongation events in vitro by TIRF microscopy. Bio Protoc 7: e2146. https://doi.org/10.21769/BioProtoc.2146 doi: 10.21769/BioProtoc.2146
    Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE (2000) Alpha-synuclein membrane interactions and lipid specificity. J Boil Chem 275: 34328−34334 doi: 10.1074/jbc.M004345200
    Joo C, Ha T (2012a) Preparing sample chambers for single-molecule FRET. Cold Spring Harb Protoc 2012: 1104−1108
    Joo C, Ha T (2012b) Single-molecule FRET with total internal reflection microscopy. Cold Spring Harb Protoc 2012: pdb.top072058. https://doi.org/10.1101/pdb.top072058 doi: 10.1101/pdb.top072058
    Kaur U, Lee JC (2021) Membrane interaction of α-synuclein probed by neutrons and photons. Acc Chem Res 54: 302−310 doi: 10.1021/acs.accounts.0c00453
    Khadka NK, Aryal CM, Pan J (2018) Lipopolysaccharide-dependent membrane permeation and lipid clustering caused by cyclic lipopeptide colistin. ACS Omega 3: 17828−17834 doi: 10.1021/acsomega.8b02260
    Khadka NK, Timsina R, Rowe E, O'Dell M, Mainali L (2021) Mechanical properties of the high cholesterol-containing membrane: an AFM study. Biochem Biophys Acta Biomembr 1863: 183625. https://doi.org/10.1016/j.bbamem.2021.183625 doi: 10.1016/j.bbamem.2021.183625
    Kubo Si, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y, Edwards RH, Fortin DL (2005) A combinatorial code for the interaction of alpha-synuclein with membranes. J Biol Chem 280: 31664−31672 doi: 10.1074/jbc.M504894200
    Lai Y, Choi UB, Zhang Y, Zhao M, Pfuetzner RA, Wang AL, Diao J, Brunger AT (2016) N-terminal domain of complexin independently activates calcium-triggered fusion. Proc Natl Acad Sci USA 113: E4698−E4707 doi: 10.1073/pnas.1604348113
    Lai Y, Kim S, Varkey J, Lou X, Song JK, Diao J, Langen R, Shin YK (2014) Nonaggregated α-synuclein influences SNARE-dependent vesicle docking via membrane binding. Biochemistry 53: 3889−3896 doi: 10.1021/bi5002536
    Lamichhane R, Solem A, Black W, Rueda D (2010) Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods 52: 192−200 doi: 10.1016/j.ymeth.2010.06.010
    Lautenschlager J, Kaminski CF, Schierle GSK (2017) α-Synuclein-regulator of exocytosis, endocytosis, or both? Trends Cell Biol 27: 468-479
    Li X, Tong X, Lu W, Yu D, Diao J, Zhao Q (2019) Label-free detection of early oligomerization of α-synuclein and its mutants A30P/E46K through solid-state nanopores. Nanoscale 11: 6480−6488 doi: 10.1039/C9NR00023B
    Liu J, Bu B, Crowe M, Li D, Diao J, Ji B (2021) Membrane packing defects in synaptic vesicles recruit complexin and synuclein. Phys Chem Chem Phys 23: 2117−2125 doi: 10.1039/D0CP03546G
    Madine J, Hughes E, Doig AJ, Middleton DA (2009) The effects of α-synuclein on phospholipid vesicle integrity: a study using 31P NMR and electron microscopy. Mol Membr Biol 25: 518−527
    Man WK, Tahirbegi B, Vrettas MD, Preet S, Ying L, Vendruscolo M, De Simone A, Fusco G (2021) The docking of synaptic vesicles on the presynaptic membrane induced by α-synuclein is modulated by lipid composition. Nat Commun 12: 927. https://doi.org/10.1038/s41467-021-21027-4 doi: 10.1038/s41467-021-21027-4
    Ma DF, Xu CH, Hou WQ, Zhao CY, Ma JB, Huang XY, Jia Q, Ma L, Diao J, Liu C, Li M, Lu Y (2019) Detecting single-molecule dynamics on lipid membranes with quenchers-in-a-liposome FRET. Angew Chem Int Ed Engl 58: 5577−5581 doi: 10.1002/anie.201813888
    Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123: 3621−3628 doi: 10.1242/jcs.056218
    Middleton ER, Rhoades E (2010) Effects of curvature and composition α-synuclein binding to lipid vesicles. Biophys J 99: 2279−2288 doi: 10.1016/j.bpj.2010.07.056
    Murphy DD, Rueter SM, Trojanowski JQ, Lee VM (2000) Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20: 3214−3220 doi: 10.1523/JNEUROSCI.20-09-03214.2000
    Pan J, Dalzini A, Khadka NK, Aryal CM, Song L (2018) Lipid extraction by α-synuclein generates semi-transmembrane defects and lipoprotein nanoparticles. ACS Omega 8: 9586−9597
    Pan J, Sahoo PK, Dalzini A, Hayati Z, Aryal CM, Teng P, Cai J, Gutierrez HR, Song L (2017) Membrane disruption mechanism of a prion peptide (106–126) investigated by atomic force microscopy, Raman and electron paramagnetic resonance spectroscopy. J Phys Chem B 121: 5058−5071 doi: 10.1021/acs.jpcb.7b02772
    Pfefferkorn CM, Jiang Z, C Lee JC (2012) Biophysics of α-synuclein membrane interactions. Biochem Biophys Acta 1818: 162−171 doi: 10.1016/j.bbamem.2011.07.032
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin CR, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045−2047 doi: 10.1126/science.276.5321.2045
    Rhoades E, Ramlall TF, Webb WW, Eliezer D (2006) Quantification of α-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophys J 90: 4692−4700 doi: 10.1529/biophysj.105.079251
    Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM (2011) Specificity and kinetics of α-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 286: 13023−13032 doi: 10.1074/jbc.M110.204776
    Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M (1997) α-Synuclein in Lewis bodies. Nature 388: 839−840 doi: 10.1038/42166
    Stefanis L (2012) α-Synuclein in Parkinson’s disease. Cold Spring Harb Prespect Med 4: a009399. https://doi.org/10.1101/cshperspect.a009399 doi: 10.1101/cshperspect.a009399
    Steyer JA, Almers W (2001) A real-time view of within 100 nm of the plasma membrane. Nat Rev Mol Cell Biol 2: 268−275 doi: 10.1038/35067069
    Sun J, Wang L, Bao H, Premi S, Das U, Chapman ER, Roy S (2019) Functional cooperation of α-synuclein and VAMP2 in synaptic vesicle recycling. Proc Natl Acad Sci USA 116: 11113−11115 doi: 10.1073/pnas.1903049116
    Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Bru gger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F, Jahn R (2006) Molecular anatomy of a trafficking organelle. Cell 127: 831−846 doi: 10.1016/j.cell.2006.10.030
    Tengholm A, Teruel MN, Meyer T (2003) Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy. Sci STKE 2003: pl4
    Tian Z, Gong J, Crowe M, Lei M, Li D, Ji B, Diao J (2019) Biochemical studies of membrane fusion at the single-particle level. Prog Lipid Res 73: 92−100 doi: 10.1016/j.plipres.2019.01.001
    West A, Brummel BE, Braun AR, Rhoades E, Sachs JN (2016) Membrane remodeling and mechanics: experiments and simulations of α-Synuclein. Biochem Biophys Acta 1858: 1594−1609 doi: 10.1016/j.bbamem.2016.03.012
    Wang C, Zhao C, Li D, Tian Z, Lai Y, Diao J, Liu C (2016) Versitile structures of α-synuclein. Front Mol Neurosci 9: 48. https://doi.org/10.3389/fnmol.2016.00048 doi: 10.3389/fnmol.2016.00048
    Wang Z, Fan H, Hu X, Khamo J, Diao J, Zhang K, Pogorelov TV (2019) Coaction of electrostatic and hydrophobic interactions: dynamic constraints on disordered TrkA juxtamembrane domain. J Phys Chem B 123: 10709−10717 doi: 10.1021/acs.jpcb.9b09352
    Wu K, Li D, Xiu P, Ji B, Diao J (2020) O-GlcNAcylation inhibits the oligomerization of alpha-synuclein by declining intermolecular hydrogen bonds through a steric effect. Phys Biol 18: 016002. https://doi.org/10.1088/1478-3975/abb6dc doi: 10.1088/1478-3975/abb6dc
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article Metrics

    Article views (595) PDF downloads(55) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint