Volume 7 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Qingrong Zhang, Siying Li, Yu Yang, Yuping Shan, Hongda Wang. Studying structure and functions of cell membranes by single molecule biophysical techniques[J]. Biophysics Reports, 2021, 7(5): 384-398. doi: 10.52601/bpr.2021.210018
Citation: Qingrong Zhang, Siying Li, Yu Yang, Yuping Shan, Hongda Wang. Studying structure and functions of cell membranes by single molecule biophysical techniques[J]. Biophysics Reports, 2021, 7(5): 384-398. doi: 10.52601/bpr.2021.210018

Studying structure and functions of cell membranes by single molecule biophysical techniques

doi: 10.52601/bpr.2021.210018
Funds:  This work was supported by National Key R&D Program of China (2017YFA0505300.), National Natural Science Foundation of China (21773017, 21727816 and 21721003).
More Information
  • Cell membranes are complicated multicomponent structures, related to many basic cellular processes, such as substance transporting, energy conversion, signal transduction, mechanosensing, cell adhesion and so on. However, cell membranes have long been difficult to study at a single-molecule level due to their complex and dynamic properties. During the last decades, biophysical imaging techniques, such as atomic force microscopy and super-resolution fluorescent microscopy, have been developed to study biological structures with unprecedented resolution, enabling researchers to analyze the composition and distribution of membrane proteins and monitor their specific functions at single cell/molecule level. In this review, we highlight the structure and functions of cell membranes based on up-to-date biophysical techniques. Additionally, we describe the recent advances in force-based detecting technology, which allow insight into dynamic events and quantitativelymonitoring kinetic parameters for trans-membrane transporting in living cells.
  • loading
  • [1]
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für Mikroskopische Anatomie 9: 413−468
    [2]
    Alsteens D, Garcia MC, Lipke PN, Dufrêne YF (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci USA 107: 20744−20749 doi: 10.1073/pnas.1013893107
    [3]
    Alsteens D, Gaub HE, Newton R, Pfreundschuh M, Gerber C, Müller DJ (2017a) Atomic force microscopy-based characterization and design of biointerfaces. Nat Rev Mater 2: 17008. https://doi.org/10.1038/natrevmats.2017.8
    [4]
    Alsteens D, Newton R, Schubert R, Martinez-Martin D, Delguste M, Roska B, Muller DJ (2017b) Nanomechanical mapping of first binding steps of a virus to animal cells. Nat Nanotechnol 12: 177−183 doi: 10.1038/nnano.2016.228
    [5]
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immun 17: 593−623 doi: 10.1146/annurev.immunol.17.1.593
    [6]
    Anderson JM (2007) Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson. Photosynth Res 92: 193−197 doi: 10.1007/s11120-007-9159-z
    [7]
    Barattin R, Voyer N (2008) Chemical modifications of AFM tips for the study of molecular recognition events. Chem Commun (Camb) : 1513−1532
    [8]
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313: 1642−1645 doi: 10.1126/science.1127344
    [9]
    Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56: 930−933 doi: 10.1103/PhysRevLett.56.930
    [10]
    Bretscher MS, Raff MC (1975) Mammalian plasma membranes. Nature 258: 43−49 doi: 10.1038/258043a0
    [11]
    Brewer CF, Miceli MC, Baum LG (2002) Clusters, bundles, arrays and lattices: novel mechanisms for lectin–saccharide-mediated cellular interactions. Curr Opin Struct Biol 12: 616−623 doi: 10.1016/S0959-440X(02)00364-0
    [12]
    Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533−544 doi: 10.1016/0092-8674(92)90189-J
    [13]
    Bruzas I, Lum W, Gorunmez Z, Sagle L (2018) Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 143: 3990−4008 doi: 10.1039/C8AN00606G
    [14]
    Bustin S (2015) Molecular biology of the cell, Sixth Edition; ISBN: 9780815344643; and molecular biology of the cell, Sixth Edition, The problems book; ISBN 9780815344537. Int J Mol Sci 16: 28123−28125 doi: 10.3390/ijms161226074
    [15]
    Calder LJ, Rosenthal PB (2016) Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat Struct Mol Biol 23: 853−858 doi: 10.1038/nsmb.3271
    [16]
    Capitanio M, Pavone Francesco S (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105: 1293−1303 doi: 10.1016/j.bpj.2013.08.007
    [17]
    Cascione M, de Matteis V, Rinaldi R, Leporatti S (2017) Atomic force microscopy combined with optical microscopy for cells investigation. Microsc Res Tech 80: 109−123 doi: 10.1002/jemt.22696
    [18]
    Chen JL, Gao J, Zhang M, Cai MJ, Xu HJ, Jiang JG, Tian ZY, Wang HD (2016) Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Sci Rep 6: 30247. https://doi.org/10.1038/srep30247
    [19]
    Cheville NF, Stasko J (2014) Techniques in electron microscopy of animal tissue. Vet Pathol 51: 28−41 doi: 10.1177/0300985813505114
    [20]
    Dürig U, Pohl DW, Rohner F (1986) Near-field optical-scanning microscopy. J Appl Phys 59: 3318−3327 doi: 10.1063/1.336848
    [21]
    Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Phys 5: 495−508 doi: 10.1002/jcp.1030050409
    [22]
    Deindl S, Zhuang X (2012) Monitoring conformational dynamics with single-molecule fluorescence energy transfer: applications in nucleosome remodeling. Methods Enzymol Chapter Three : 59−86
    [23]
    Delguste M, Zeippen C, Machiels B, Mast J, Gillet L, Alsteens D (2018) Multivalent binding of herpesvirus to living cells is tightly regulated during infection. Sci Adv 4: 1273. https://doi.org/10.1126/sciadv.aat1273
    [24]
    Ding B, Tian Y, Pan Y, Shan Y, Cai M, Xu H, Sun Y, Wang H (2015) Recording the dynamic endocytosis of single gold nanoparticles by AFM-based force tracing. Nanoscale 7: 7545−7549 doi: 10.1039/C5NR01020A
    [25]
    Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev Biochem 78: 857−902 doi: 10.1146/annurev.biochem.78.081307.110540
    [26]
    Dufrene YF (2008) Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6: 674−680 doi: 10.1038/nrmicro1948
    [27]
    Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrene YF (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5: 857−862 doi: 10.1038/nchembio.220
    [28]
    Dupres V, Menozzi FD, Locht C, Clare BH, Abbott NL, Cuenot S, Bompard C, Raze D, Dufrêne YF (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2: 515−520 doi: 10.1038/nmeth769
    [29]
    Edidin M (2001) Near-field scanning optical microscopy, a siren call to biology. Traffic (Copenhagen, Denmark) 2: 797−803 doi: 10.1034/j.1600-0854.2001.21108.x
    [30]
    Eggeling C, Willig KI, Sahl SJ, Hell SW (2015) Lens-based fluorescence nanoscopy. Q Rev Biophys 48: 178−243 doi: 10.1017/S0033583514000146
    [31]
    Engel A, Muller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7: 715−718 doi: 10.1038/78929
    [32]
    Engel S, Scolari S, Thaa B, Krebs N, Korte T, Herrmann A, Veit M (2010) FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts. Biochem J 425: 567−573 doi: 10.1042/BJ20091388
    [33]
    Escribá PV, González-Ros JM, Goñi FM, Kinnunen PKJ, Vigh L, Sánchez-Magraner L, Fernández AM, Busquets X, Horváth I, Barceló-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12: 829−875 doi: 10.1111/j.1582-4934.2008.00281.x
    [34]
    Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Annalen der Physik 437: 55−75 doi: 10.1002/andp.19484370105
    [35]
    Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70: 2767−2773 doi: 10.1016/S0006-3495(96)79846-6
    [36]
    Fisher JK, Cribb J, Desai KV, Vicci L, Wilde B, Keller K, II RMT, Haase J, Bloom K, O’Brien ET, Superfine R (2006) Thin-foil magnetic force system for high-numerical-aperture microscopy. Rev Sci Instrum 77: 023702. https://doi.org/10.1063/1.2166509
    [37]
    Fujita A, Cheng J, Fujimoto T (2009) Segregation of GM1 and GM3 clusters in the cell membrane depends on the intact actin cytoskeleton. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1791: 388−396
    [38]
    Gaboriaud F, Parcha BS, Gee ML, Holden JA, Strugnell RA (2008) Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging. Colloids Surf B: Biointerfaces 62: 206−213 doi: 10.1016/j.colsurfb.2007.10.004
    [39]
    Gao J, Wang Y, Cai MJ, Pan YG, Xu HJ, Jiang JG, Ji HB, Wang HD (2015) Mechanistic insights into EGFR membrane clustering revealed by super-resolution imaging. Nanoscale 7: 2511−2519 doi: 10.1039/C4NR04962D
    [40]
    Gao L, Chen JL, Gao J, Wang HD, Xiong WY (2017) Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes. J Cell Sci 130: 396−405
    [41]
    Garcia-Parajo MF, Cambi A, Torreno-Pina JA, Thompson N, Jacobson K (2014) Nanoclustering as a dominant feature of plasma membrane organization. J Cell Sci 127: 4995−5005 doi: 10.1242/jcs.146340
    [42]
    Gerle C (2019) Essay on biomembrane structure. J Membrane Biol 252: 115−130 doi: 10.1007/s00232-019-00061-w
    [43]
    Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51: 2959−2973 doi: 10.1021/bi2018909
    [44]
    Gomes de Castro MA, Wildhagen H, Sograte-Idrissi S, Hitzing C, Binder M, Trepel M, Engels N, Opazo F (2019) Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane. Nat Commun 10: 820. https://doi.org/10.1038/s41467-019-08677-1
    [45]
    Goni FM (2014) The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim Biophys Acta 1838: 1467−1476 doi: 10.1016/j.bbamem.2014.01.006
    [46]
    Gorter E, Grendel F (1925) On biomolecular layers of lipoids on the chromocytes of the blood. J Exp Med 41: 439−443 doi: 10.1084/jem.41.4.439
    [47]
    Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82: 3314−3329 doi: 10.1016/S0006-3495(02)75672-5
    [48]
    Gudheti MV, Curthoys NM, Gould TJ, Kim D, Gunewardene MS, Gabor KA, Gosse JA, Kim CH, Zimmerberg J, Hess ST (2013) Actin mediates the nanoscale membrane organization of the clustered membrane protein influenza hemagglutinin. Biophys J 104: 2182−2192 doi: 10.1016/j.bpj.2013.03.054
    [49]
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Micro 198: 82−87 doi: 10.1046/j.1365-2818.2000.00710.x
    [50]
    Haber C, Wirtz D (2000) Magnetic tweezers for DNA micromanipulation. Rev Sci Instrum 71: 4561−4570 doi: 10.1063/1.1326056
    [51]
    Harms GS, Cognet L, Lommerse PHM, Blab GA, Kahr H, Gamsjäger R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of L-type Ca2+ channels in live cells. Biophys J 81: 2639−2646 doi: 10.1016/S0006-3495(01)75907-3
    [52]
    Heberle FA, Wu J, Goh SL, Petruzielo RS, Feigenson GW (2010) Comparison of three ternary lipid bilayer mixtures: FRET and ESR reveal nanodomains. Biophys J 99: 3309−3318 doi: 10.1016/j.bpj.2010.09.064
    [53]
    Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed 47: 6172−6176 doi: 10.1002/anie.200802376
    [54]
    Hein B, Willig KI, Wurm CA, Westphal V, Jakobs S, Hell SW (2010) Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins. Biophys J 98: 158−163 doi: 10.1016/j.bpj.2009.09.053
    [55]
    Heintzmann R, Gustafsson MGL (2009) Subdiffraction resolution in continuous samples. Nat Photonics 3: 362−364 doi: 10.1038/nphoton.2009.102
    [56]
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19: 780−782 doi: 10.1364/OL.19.000780
    [57]
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91: 4258−4272 doi: 10.1529/biophysj.106.091116
    [58]
    Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci USA 104: 17370−17375 doi: 10.1073/pnas.0708066104
    [59]
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3: 347−355 doi: 10.1038/nmeth871
    [60]
    Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143: 1047−1058 doi: 10.1016/j.cell.2010.12.002
    [61]
    Huang B, Bates M, Zhuang X (2009) Super-resolution fluorescence microscopy. Annu Rev Biochem 78: 993−1016 doi: 10.1146/annurev.biochem.77.061906.092014
    [62]
    Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80: 2667−2677 doi: 10.1016/S0006-3495(01)76236-4
    [63]
    Jacobson K, Liu P, Lagerholm BC (2019) The lateral organization and mobility of plasma membrane components. Cell 177: 806−819 doi: 10.1016/j.cell.2019.04.018
    [64]
    Jaumot J, Vives M, Gargallo R (2004) Application of multivariate resolution methods to the study of biochemical and biophysical processes. Anal Biochem 327: 1−13 doi: 10.1016/j.ab.2003.12.028
    [65]
    Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423: 33−41 doi: 10.1038/nature01580
    [66]
    Kellner RR, Baier CJ, Willig KI, Hell SW, Barrantes FJ (2007) Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience 144: 135−143 doi: 10.1016/j.neuroscience.2006.08.071
    [67]
    Kollmannsberger P, Fabry B (2007) High-force magnetic tweezers with force feedback for biological applications. Rev Sci Instrum 78: 114301. https://doi.org/10.1063/1.2804771
    [68]
    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C (2013) Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135: 1438−1444 doi: 10.1021/ja309812z
    [69]
    Letschert S, Göhler A, Franke C, Bertleff-Zieschang N, Memmel E, Doose S, Seibel J, Sauer M (2014) Super-resolution imaging of plasma membrane glycans. Angew Chem Int Ed 53: 10921−10924 doi: 10.1002/anie.201406045
    [70]
    Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11: 90−96
    [71]
    Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS, Davis MM (2006) Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci USA 103: 18992−18997 doi: 10.1073/pnas.0609009103
    [72]
    Lin JC, Duell K, Konopka JB (2004) A microdomain formed by the extracellular ends of the transmembrane domains promotes activation of the G protein-coupled α-factor receptor. Mol Cell Biol 24: 2041−2051 doi: 10.1128/MCB.24.5.2041-2051.2004
    [73]
    Lipfert J, Hao X, Dekker NH (2009) Quantitative modeling and optimization of magnetic tweezers. Biophys J 96: 5040−5049 doi: 10.1016/j.bpj.2009.03.055
    [74]
    Lommerse PHM, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-Ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86: 609−616 doi: 10.1016/S0006-3495(04)74139-9
    [75]
    Lu D, Yang X, Zhang Q, Wang R, Zhou S, Yang G, Shan Y (2019) Tracking the single-carbon-dot transmembrane transport by force tracing Based on atomic force microscopy. ACS Biomater Sci Eng 5: 432−437 doi: 10.1021/acsbiomaterials.8b01363
    [76]
    Maimaiti A, Truong VG, Sergides M, Gusachenko I, Nic Chormaic S (2015) Higher order microfibre modes for dielectric particle trapping and propulsion. Sci Rep 5: 9077. https://doi.org/10.1038/srep09077
    [77]
    Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5: 155−157 doi: 10.1038/nmeth.1176
    [78]
    Mateos-Gil P, Letschert S, Doose S, Sauer M (2016) Super-resolution imaging of plasma membrane proteins with click chemistry. Front Cell Dev Biol 4: 98. https://doi.org/10.3389/fcell.2016.00098
    [79]
    Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79: 803−833 doi: 10.1146/annurev-biochem-060208-104626
    [80]
    Mezzetti A, Leibl W (2017) Time-resolved infrared spectroscopy in the study of photosynthetic systems. Photosynth Res 131: 121−144 doi: 10.1007/s11120-016-0305-3
    [81]
    Michaelis J, Hettich C, Mlynek J, Sandoghdar V (2000) Optical microscopy using a single-molecule light source. Nature 405: 325−328 doi: 10.1038/35012545
    [82]
    Mockl L, Pedram K, Roy AR, Krishnan V, Gustavsson AK, Dorigo O, Bertozzi CR, Moerner WE (2019) Quantitative super-resolution microscopy of the mammalian glycocalyx. Dev Cell 50: 57−72 e56 doi: 10.1016/j.devcel.2019.04.035
    [83]
    Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283: 1670−1676 doi: 10.1126/science.283.5408.1670
    [84]
    Mouritsen OG (2011) Lipidology and lipidomics––quo vadis? A new era for the physical chemistry of lipids. Phys Chem Chem Phys 13: 19195−19205 doi: 10.1039/c1cp22484k
    [85]
    Muller DJ, Dufrene YF (2008) Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 3: 261−269 doi: 10.1038/nnano.2008.100
    [86]
    Muller DJ, Helenius J, Alsteens D, Dufrene YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5: 383−390 doi: 10.1038/nchembio.181
    [87]
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5: 491−505 doi: 10.1038/nmeth.1218
    [88]
    Nicolson GL (2014) The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta-Biomembr 1838: 1451−1466 doi: 10.1016/j.bbamem.2013.10.019
    [89]
    Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40: 4128−4158 doi: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
    [90]
    Oesterhelt F, Rief M, Gaub HE (1999) Single molecule force spectroscopy by AFM indicates helical structure of poly(ethylene-glycol) in water. N J Phys 1: 6−6 doi: 10.1088/1367-2630/1/1/006
    [91]
    Pan Y, Zhang Y, Gongpan P, Zhang Q, Huang S, Wang B, Xu B, Shan Y, Xiong W, Li G, Wang H (2018) Single glucose molecule transport process revealed by force tracing and molecular dynamics simulations. Nanoscale Horizon 3: 517−524 doi: 10.1039/C8NH00056E
    [92]
    Pan YG, Wang SW, Shan YP, Zhang DL, Gao J, Zhang M, Liu SH, Cai MJ, Xu HJ, Li GH, Qin QW, Wang HD (2015) Ultrafast tracking of a single live virion during the invagination of a cell membrane. Small 11: 2782−2788 doi: 10.1002/smll.201403491
    [93]
    Pan YG, Zhang FX, Zhang LY, Liu SH, Cai MJ, Shan YP, Wang XQ, Wang HZ, Wang HD (2017) The process of wrapping virus revealed by a force tracing technique and simulations. Adv Sci 4: 1600489. https://doi.org/10.1002/advs.201600489
    [94]
    Pathak P, London E (2015) The effect of membrane lipid composition on the formation of lipid ultrananodomains. Biophys J 109: 1630−1638 doi: 10.1016/j.bpj.2015.08.029
    [95]
    Patterson G, Davidson M, Manley S, Lippincott-Schwartz J (2010) Superresolution imaging using single-molecule localization. Annu Rev Phys Chem 61: 345−367 doi: 10.1146/annurev.physchem.012809.103444
    [96]
    Peng F, Su Y, Wei X, Lu Y, Zhou Y, Zhong Y, Lee S-T, He Y (2013) Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew Chem Int Ed 52: 1457−1461 doi: 10.1002/anie.201206737
    [97]
    Pertsinidis A, Zhang Y, Chu S (2010) Subnanometre single-molecule localization, registration and distance measurements. Nature 466: 647−651 doi: 10.1038/nature09163
    [98]
    Rankl C, Kienberger F, Wildling L, Wruss J, Gruber HJ, Blaas D, Hinterdorfer P (2008) Multiple receptors involved in human rhinovirus attachment to live cells. Proc Natl Acad Sci USA 105: 17778−17783 doi: 10.1073/pnas.0806451105
    [99]
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200: 373−383 doi: 10.1083/jcb.201211138
    [100]
    Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MGL (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci USA 109: E135−E143 doi: 10.1073/pnas.1107547108
    [101]
    Ritort F (2006) Single-molecule experiments in biological physics: methods and applications. J Phys: Condens Matter 18: R531−R583 doi: 10.1088/0953-8984/18/32/R01
    [102]
    Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I (2009) Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459: 574−577 doi: 10.1038/nature08029
    [103]
    Rogacki MK, Golfetto O, Tobin SJ, Li T, Biswas S, Jorand R, Zhang H, RadoiV, Ming Y, Svenningsson P, Ganjali D, Wakefield DL, Sideris A, Small AR, Terenius L, Jovanovic-Talisman T, Vukojevic V (2018) Dynamic lateral organization of opioid receptors (kappa, muwt and muN40D) in the plasma membrane at the nanoscale level. Traffic 19(9): 690−709 doi: 10.1111/tra.12582
    [104]
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793−796 doi: 10.1038/nmeth929
    [105]
    Saha S, Raghupathy R, Mayor S (2015) Homo-FRET imaging highlights the nanoscale organization of cell surface molecules. Methods Mol Biol 1251: 151−173 doi: 10.1007/978-1-4939-2080-8_9
    [106]
    Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18: 685−701
    [107]
    Sanchez CP, Karathanasis C, Sanchez R, Cyrklaff M, Jäger J, Buchholz B, Schwarz US, Heilemann M, Lanzer M (2019) Single-molecule imaging and quantification of the immune-variant adhesin VAR2CSA on knobs of Plasmodium falciparum-infected erythrocytes. Commun Biol 2: 172. https://doi.org/10.1038/s42003-019-0429-z
    [108]
    Sauter NK, Hanson JE, Glick GD, Brown JH, Crowther RL, Park SJ, Skehel JJ, Wiley DC (1992) Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and x-ray crystallography. Biochemistry 31: 9609−9621 doi: 10.1021/bi00155a013
    [109]
    Scarselli M, Annibale P, Radenovic A (2012) Cell type-specific beta2-adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. J Biol Chem 287: 16768−16780 doi: 10.1074/jbc.M111.329912
    [110]
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MGL, Leonhardt H, Sedat JW (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320: 1332−1336 doi: 10.1126/science.1156947
    [111]
    Sengupta P, Van Engelenburg S, Lippincott-Schwartz J (2012) Visualizing cell structure and function with point-localization superresolution imaging. Dev Cell 23: 1092−1102 doi: 10.1016/j.devcel.2012.09.022
    [112]
    Shan Y, Wang H (2015) The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 44: 3617−3638 doi: 10.1039/C4CS00508B
    [113]
    Shan YP, Wang ZY, Hao XA, Shang X, Cai MJ, Jiang JG, Fang XX, Wang HD, Tang ZY (2010) Locating the band III protein in quasi-native cell membranes. Anal Methods 2: 805−808 doi: 10.1039/c0ay00278j
    [114]
    Sharma P, Varma R, Sarasij RC, I ra, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116: 577−589 doi: 10.1016/S0092-8674(04)00167-9
    [115]
    Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103: 18911−18916 doi: 10.1073/pnas.0609643104
    [116]
    Sherman E, Barr V, Manley S, Patterson G, Balagopalan L, Akpan I, Regan CK, Merrill RK, Sommers CL, Lippincott-Schwartz J, Samelson LE (2011) Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35: 705−720 doi: 10.1016/j.immuni.2011.10.004
    [117]
    Shibata SC, Hibino K, Mashimo T, Yanagida T, Sako Y (2006) Formation of signal transduction complexes during immobile phase of NGFR movements. Biochem Biophys Res Commun 342: 316−322 doi: 10.1016/j.bbrc.2006.01.126
    [118]
    Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5: 417−423 doi: 10.1038/nmeth.1202
    [119]
    Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci USA 104: 20308−20313 doi: 10.1073/pnas.0710517105
    [120]
    Sieben C, Kappel C, Zhu R, Wozniak A, Rankl C, Hinterdorfer P, Grubmuller H, Herrmann A (2012) Influenza virus binds its host cell using multiple dynamic interactions. Proc Natl Acad Sci USA 109: 13626−13631 doi: 10.1073/pnas.1120265109
    [121]
    Simmons RM, Finer JT, Chu S, Spudich JA (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70: 1813−1822 doi: 10.1016/S0006-3495(96)79746-1
    [122]
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569−572 doi: 10.1038/42408
    [123]
    Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31−39
    [124]
    Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175: 720−731 doi: 10.1126/science.175.4023.720
    [125]
    Strunz T, Oroszlan K, Schafer R, Guntherodt HJ (1999) Dynamic force spectroscopy of single DNA molecules. Proc Natl Acad Sci USA 96: 11277−11282 doi: 10.1073/pnas.96.20.11277
    [126]
    Syed A, Smith EA (2017) Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers. Annu Rev Anal Chem 10: 271−291 doi: 10.1146/annurev-anchem-061516-045317
    [127]
    Tani T, Miyamoto Y, Fujimori KE, Taguchi T, Yanagida T, Sako Y, Harada Y (2005) Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis. J Neurosci 25: 2181−2191 doi: 10.1523/JNEUROSCI.4570-04.2005
    [128]
    Teramura Y, Ichinose J, Takagi H, Nishida K, Yanagida T, Sako Y (2006) Single-molecule analysis of epidermal growth factor binding on the surface of living cells. EMBO J 25: 4215−4222 doi: 10.1038/sj.emboj.7601308
    [129]
    Thomas JA (2015) Optical imaging probes for biomolecules: an introductory perspective. Che Soc Rev 44: 4494−4500 doi: 10.1039/C5CS00070J
    [130]
    Tian YM, Cai MJ, Xu HJ, Ding BH, Hao X, Jiang JG, Sun YC, Wang HD (2014a) Atomic force microscopy of asymmetric membranes from turtle erythrocytes. Mol Cells 37: 592−597 doi: 10.14348/molcells.2014.0115
    [131]
    Tian YM, Cai MJ, Xua HJ, Wang HD (2014b) Studying the membrane structure of chicken erythrocytes by in situ atomic force microscopy. Analy Methods 6: 8115−8119 doi: 10.1039/C4AY01260G
    [132]
    Tian YM, Cai MJ, Zhao WD, Wang SW, Qin QW, Wang HD (2014c) The asymmetric membrane structure of erythrocytes from crucian carp studied by atomic force microscopy. Chin Sci Bull 59: 2582−2587
    [133]
    Tuerhong M, Xu Y, Yin X-B (2017) Review on carbon dots and their applications. Chinese J Anal Chem 45: 139−150 doi: 10.1016/S1872-2040(16)60990-8
    [134]
    Ueda M, Sako Y, Tanaka T, Devreotes P, Yanagida T (2001) Single-molecule analysis of chemotactic signaling in dictyostelium cells. Science 294: 864−867 doi: 10.1126/science.1063951
    [135]
    Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4: 319−321 doi: 10.1038/nmeth1024
    [136]
    van den Bogaart G, Meyenberg K, Risselada HJ, Amin H, Willig KI, Hubrich BE, Dier M, Hell SW, Grubmüller H, Diederichsen U, Jahn R (2011) Membrane protein sequestering by ionic protein-lipid interactions. Nature 479: 552−555 doi: 10.1038/nature10545
    [137]
    van Zanten TS, Cambi A, Koopman M, Joosten B, Figdor CG, Garcia-Parajo MF (2009) Hotspots of GPI-anchored proteins and integrin nanoclusters function as nucleation sites for cell adhesion. Proc Natl Acad Sci USA 106: 18557−18562 doi: 10.1073/pnas.0905217106
    [138]
    van Zanten TS, Gomez J, Manzo C, Cambi A, Buceta J, Reigada R, Garcia-Parajo MF (2010) Direct mapping of nanoscale compositional connectivity on intact cell membranes. Proc Natl Acad Sci USA 107: 15437−15442 doi: 10.1073/pnas.1003876107
    [139]
    Vinothkumar KR (2015) Membrane protein structures without crystals, by single particle electron cryomicroscopy. Curr Opin Struct Biol 33: 103−114 doi: 10.1016/j.sbi.2015.07.009
    [140]
    Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM (2002) Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83: 2681−2692 doi: 10.1016/S0006-3495(02)75277-6
    [141]
    Wang HD, Hao X, Shan YP, Jiang JG, Cai MJ, Shang X (2010) Preparation of cell membranes for high resolution imaging by AFM. Ultramicroscopy 110: 305−312 doi: 10.1016/j.ultramic.2009.12.014
    [142]
    Wang R, Yang X, Leng D, Zhang Q, Lu D, Zhou S, Yang Y, Yang G, Shan Y (2019) Monitoring the trans-membrane transport of single fluorescent silicon nanoparticles based on the force tracing technique. Anal Methods 11: 1724−1728 doi: 10.1039/C9AY00037B
    [143]
    Wang Y, Gao J, Guo XD, Tong T, Shi XS, Li LY, Qi M, Wang YJ, Cai MJ, Jiang JG, Xu CQ, Ji HB, Wang HD (2014) Regulation of EGFR nanocluster formation by ionic protein-lipid interaction. Cell Res 24: 959−976 doi: 10.1038/cr.2014.89
    [144]
    Wu JZ, Gao J, Qi M, Wang JZ, Cai MJ, Liu SH, Hao X, Jiang JG, Wang HD (2013a) High-efficiency localization of Na+-K+ ATPases on the cytoplasmic side by direct stochastic optical reconstruction microscopy. Nanoscale 5: 11582−11586 doi: 10.1039/c3nr03665k
    [145]
    Wu Y-L, Putcha N, Ng KW, Leong DT, Lim CT, Loo SCJ, Chen X (2013b) Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc Chem Res 46: 782−791 doi: 10.1021/ar300046u
    [146]
    Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312: 228−230 doi: 10.1126/science.1127566
    [147]
    Yan J, Skoko D, Marko JF (2004) Near-field-magnetic-tweezer manipulation of single DNA molecules. Phys Rev E 70: 011905. https://doi.org/10.1103/PhysRevE.70.011905
    [148]
    Yan QY, Lu YT, Zhou LL, Chen JL, Xu HJ, Cai MJ, Shi Y, Jiang JG, Xiong WY, Gao J, Wang HD (2018) Mechanistic insights into GLUT1 activation and clustering revealed by super-resolution imaging. Proc Natl Acad Sci USA 115: 7033−7038 doi: 10.1073/pnas.1803859115
    [149]
    Yang B, Xu H, Wang S, Cai M, Shi Y, Yang G, Wang H, Shan Y (2016) Studying the dynamic mechanism of transporting a single drug carrier-polyamidoamine dendrimer through cell membranes by force tracing. Nanoscale 8: 18027−18031 doi: 10.1039/C6NR05838H
    [150]
    Yasushi S, Shigeru MT (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2: 168−172 doi: 10.1038/35004044
    [151]
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1. 5-nm localization. Science 300: 2061−2065
    [152]
    Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc, Interface 5: 671−690 doi: 10.1098/rsif.2008.0052
    [153]
    Zhao W, Tian Y, Cai M, Wang F, Wu J, Gao J, Liu S, Jiang J, Jiang S, Wang H (2014) Studying the nucleated mammalian cell membrane by single molecule approaches. PLoS One 9: e91595. https://doi.org/10.1371/journal.pone.0091595
    [154]
    Zhao G, Zou T, Cheng S, Yu Y, Wang H, Wang H (2020) Developments of in situ cryo-electron tomography for biological applications. Chem J Chinese Universities 41: 2335−2344
    [155]
    Zhou S, Yang B, Chen Y, Zhang Q, Cai M, Xu H, Yang G, Wang H, Shan Y (2018) Exploring the trans-membrane dynamic mechanisms of single polyamidoamine nano-drugs via a “force tracing” technique. RSC Adv 8: 8626−8630 doi: 10.1039/C8RA00134K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1579) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return