Citation: | Guangcan Shao, Yong Cao, Zhenlin Chen, Chao Liu, Shangtong Li, Hao Chi, Meng-Qiu Dong. How to use open-pFind in deep proteomics data analysis?— A protocol for rigorous identification and quantitation of peptides and proteins from mass spectrometry data[J]. Biophysics Reports, 2021, 7(3): 207-226. doi: 10.52601/bpr.2021.210004 |
[1] |
Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537: 347−355 doi: 10.1038/nature19949
|
[2] |
Chen C, Hou J, TannerJJ, Cheng J (2020) Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci 21: 2873. https://doi.org/10.3390/ijms21082873
|
[3] |
Chi H, Liu C, Yang H, Zeng WF, Wu L, Zhou WJ, Wang RM, Niu XN, Ding YH, Zhang Y, Wang ZW, Chen ZL, Sun RX, Liu T, Tan GM, Dong MQ, Xu P, Zhang PH, He SM (2018) Comprehensive identification of peptides in tandem mass spectra using an efficient open search engine. Nat Biotechnol 36: 1059−1061 doi: 10.1038/nbt.4236
|
[4] |
Cong Y, Motamedchaboki K, Misal SA, Liang Y, Guise AJ, Truong T, Huguet R, Plowey ED, Zhu Y, Lopez-Ferrer D, Kelly RT (2021) Ultrasensitive single-cell proteomics workflow identifies >1000 protein groups per mammalian cell. Chem Sci 12: 1001−1006 doi: 10.1039/D0SC03636F
|
[5] |
Conrads TP, Alving K, Veenstra TD, Belov ME, Anderson GA, Anderson DJ, Lipton MS, Pasa-Tolic L, Udseth HR, Chrisler WB, Thrall BD, Smith RD (2001) Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal Chem 73: 2132−2139 doi: 10.1021/ac001487x
|
[6] |
Creasy DM, Cottrell JS (2004) Unimod: protein modifications for mass spectrometry. Proteomics 4: 1534−1536 doi: 10.1002/pmic.200300744
|
[7] |
Hoopmann MR, Moritz RL (2013) Current algorithmic solutions for peptide-based proteomics data generation and identification. Curr Opin Biotechnol 24: 31−38 doi: 10.1016/j.copbio.2012.10.013
|
[8] |
Huesgen PF, Lange PF, Rogers LD, Solis N, Eckhard U, Kleifeld O, Goulas T, Gomis-Ruth FX, Overall CM (2015) LysargiNase mirrors trypsin for protein C-terminal and methylation-site identification. Nat methods 12: 55−58 doi: 10.1038/nmeth.3177
|
[9] |
Ma J, Chen T, Wu S, Yang C, Bai M, Shu K, Li K, Zhang G, Jin Z, He F (2019) iProX: an integrated proteome resource. Nucleic Acids Res 47: D1211−D1217 doi: 10.1093/nar/gky869
|
[10] |
Meier F, Brunner AD, Frank M, Ha A, Bludau I, Voytik E, Kaspar-Schoenefeld S, Lubeck M, Raether O, Bache N, Aebersold R, Collins BC, Röst HL, Mann M (2020) diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nature methods 17: 1229−1236 doi: 10.1038/s41592-020-00998-0
|
[11] |
Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35: 1050−1055 doi: 10.1002/bies.201300066
|
[12] |
Muller JB, Geyer PE, Colaco AR, Treit PV, Strauss MT, Oroshi M, Doll S, Virreira Winter S, Bader JM, Kohler N, Theis F, Santos A, Mann M (2020) The proteome landscape of the kingdoms of life. Nature 582: 592−596 doi: 10.1038/s41586-020-2402-x
|
[13] |
Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1: 376−386 doi: 10.1074/mcp.M200025-MCP200
|
[14] |
Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75: 1895−1904 doi: 10.1021/ac0262560
|
[15] |
Valikangas T, Suomi T, Elo LL (2018) A comprehensive evaluation of popular proteomics software workflows for label-free proteome quantification and imputation. Brief Bioinform 19: 1344−1355
|
![]() |
![]() |