Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Ghimire Chiran, Guo Peixuan. Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting[J]. Biophysics Reports, 2021, 7(6): 449-474. doi: 10.52601/bpr.2021.210003
Citation: Ghimire Chiran, Guo Peixuan. Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting[J]. Biophysics Reports, 2021, 7(6): 449-474. doi: 10.52601/bpr.2021.210003

Optical tweezer and TIRF microscopy for single molecule manipulation of RNA/DNA nanostructures including their rubbery property and single molecule counting

doi: 10.52601/bpr.2021.210003
Funds:  The research in P. Guo’s lab was supported by NCI/NIH grant (U01CA207946) and NIBIB/NIH grant (R01EB019036). P. Guo's Sylvan G. Frank Endowed Chair position in Pharmaceutics and Drug Delivery is funded by the CM Chen Foundation. We thank Hui Zhang for initiation of the instrumentation of smTIRF; Mario Vieweger and Hanbin Mao for their collaboration in instrumentation of the optical tweezers; Yinmei Li for communication of optical tweezer 20 years ago; Eckhard Jankowsky, David Rueda, Nils Walter, Noji Hiroyuki, Taekjip Ha, Toshio Yanagida, Kazuhiko Kinosita Jr., Wulf-Dieter Moll, Chris Meiners, Meredith Lambert, Peter Stockley, Faqing Huang and Masasuke Yoshida for their technical assistance and valuable comments on smTIRF. We thank Lixia Zhou, Nic Burns and Archie Bhullar for proofreading of the manuscript.
More Information
  • Corresponding author: guo.1091@osu.edu (P. Guo)
  • Received Date: 07 February 2021
  • Accepted Date: 23 March 2021
  • Available Online: 07 July 2021
  • Publish Date: 31 December 2021
  • Life science is often focused on the microscopic level. Single-molecule technology has been used to observe components at the micro- or nanoscale. Single-molecule imaging provides unprecedented information about the behavior of individual molecules in contrast to the information from ensemble methods that average the information of many molecules in various states. A typical feature of living systems is motion. The lack of synchronicity of motion biomachines in living systems makes it challenging to image the motion process with high resolution. Thus, single-molecule technology is especially useful for real-time study on motion mechanism of biomachines, such as viral DNA packaging motor, or other ATPases. The most common optical instrumentations in single-molecule studies are optical tweezers and single molecule total internal refection fluorescence microscopy (smTIRF). Optical tweezers are the force-based technique. The analysis of RNA using optical tweezer has led to the discovery of the rubbery or amoeba property of RNA nanoparticles for compelling vessel extravasation to enhance tumor targeting and fast renal excretion. The rubbery property of RNA lends mechanistic evidence for RNAs use as an ideal reagent in cancer treatment with undetectable toxicity. Single molecule photobleaching allows for the direct counting of biomolecules. This technique was invented for single molecule counting of RNA in the phi29 DNA packaging motor to resolve the debate between five and six copies of RNA in the motor. The technology has subsequently extended to counting components in biological machines composed of protein, DNA, and other macromolecules. In combination with statistical analysis, it reveals biomolecular mechanisms in detail and leads to the development of ultra-sensitive sensors in diagnosis and forensics. This review focuses on the applications of optical tweezers and fluorescence-based techniques as single-molecule technologies to resolve mechanistic questions related to RNA and DNA nanostructures.
  • loading
  • [1]
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5): 288−290 doi: 10.1364/OL.11.000288
    Abels JA, Moreno-Herrero F, van der Heijden T, Dekker C, Dekker NH (2005) Single-molecule measurements of the persistence length of double-stranded RNA. Biophys J 88(4): 2737−2744 doi: 10.1529/biophysj.104.052811
    Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130(2): 309−321 doi: 10.1016/j.cell.2007.05.020
    Agate B, Brown CTA, Sibbett W, Dholakia K (2004) Femtosecond optical tweezers for in-situ control of two-photon fluorescence. Opt Express 12(13): 3011−3017 doi: 10.1364/OPEX.12.003011
    Amrute-Nayak M, Bullock SL (2012) Single-molecule assays reveal that RNA localization signals regulate dynein-dynactin copy number on individual transcript cargoes. Nat Cell Biol 14(4): 416−423 doi: 10.1038/ncb2446
    Annibale P, Vanni S, Scarselli M, Rothlisberger U, Radenovic A (2011) Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS One 6(7): e22678. https://doi.org/10.1371/journal.pone.0022678 doi: 10.1371/journal.pone.0022678
    Arumugam SR, Lee T-H, Benkovic SJ (2009) Investigation of stoichiometry of T4 bacteriophage helicase loader protein (gp59). J Biol Chem 284(43): 29283−29289 doi: 10.1074/jbc.M109.029926
    Stephenson W, Wan G, Tenenbaum SA, Li PTX (2014) Nanomanipulation of single RNA molecules by optical tweezers. J Vis Exp (90): 51542. https://doi.org/10.3791/51542 doi: 10.3791/51542
    Bock VD, Hiemstra H, van Maarseveen JH (2006) CuI-catalyzed alkyne–azide “click” cycloadditions from a mechanistic and synthetic perspective. Eur J Org Chem 2006(1): 51−68
    Bockelmann U, Thomen P, Essevaz-Roulet B, Viasnoff V, Heslot F (2002) Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82(3): 1537−1553 doi: 10.1016/S0006-3495(02)75506-9
    Borodavka A, Tuma R, Stockley PG (2012) Evidence that viral RNAs have evolved for efficient, two-stage packaging. Proc Natl Acad Sci USA 109(39): 15769−15774 doi: 10.1073/pnas.1204357109
    Bustamante C, Marko J, Siggia E, Smith S (1994) Entropic elasticity of lambda-phage DNA. Science 265(5178): 1599−1600 doi: 10.1126/science.8079175
    Chalfie M, Tu Y, Euskirchen G, Ward W, Prasher D (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148): 802−805 doi: 10.1126/science.8303295
    Chen X-C, Chen S-B, Dai J, Yuan J-H, Ou T-M, Huang Z-S, Tan J-H (2018) Tracking the dynamic folding and unfolding of RNA G-quadruplexes in live cells. Angew Chem Int Ed Engl 57(17): 4702−4706 doi: 10.1002/anie.201801999
    Cherny D, Gooding C, Eperon GE, Coelho MB, Bagshaw CR, Smith CWJ, Eperon IC (2010) Stoichiometry of a regulatory splicing complex revealed by single-molecule analyses. EMBO J 29(13): 2161−2172 doi: 10.1038/emboj.2010.103
    Chou Y-Y, Vafabakhsh R, Doğanay S, Gao Q, Ha T, Palese P (2012) One influenza virus particle packages eight unique viral RNAs as shown by FISH analysis. Proc Natl Acad Sci USA 109(23): 9101−9106 doi: 10.1073/pnas.1206069109
    Chuang C-Y, Zammit M, Whitmore ML, Comstock MJ (2019) Combined high-resolution optical tweezers and multicolor single-molecule fluorescence with an automated single-molecule assembly line. J Phys Chem A 123(44): 9612−9620 doi: 10.1021/acs.jpca.9b08282
    Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40(1): 71−86 doi: 10.1016/0165-0270(91)90118-J
    Churchman LS, Ökten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci USA 102(5): 1419−1423 doi: 10.1073/pnas.0409487102
    Clemen AEM, Vilfan M, Jaud J, Zhang J, Bärmann M, Rief M (2005) Force-dependent stepping kinetics of myosin-V. Biophys J 88(6): 4402−4410 doi: 10.1529/biophysj.104.053504
    Cockroft SL, Chu J, Amorin M, Ghadiri MR (2008) A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J Am Chem Soc 130(3): 818−820 doi: 10.1021/ja077082c
    Coffman VC, Wu J-Q (2012) Counting protein molecules using quantitative fluorescence microscopy. Trends Biochem Sci 37(11): 499−506 doi: 10.1016/j.tibs.2012.08.002
    Coffman VC, Wu P, Parthun MR, Wu J-Q (2011) CENP-A exceeds microtubule attachment sites in centromere clusters of both budding and fission yeast. J Cell Biol 195(4): 563−572 doi: 10.1083/jcb.201106078
    Comstock MJ, Ha T, Chemla YR (2011) Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat Methods 8(4): 335−340 doi: 10.1038/nmeth.1574
    Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136(4): 604−609 doi: 10.1016/j.cell.2009.02.003
    Das SK, Darshi M, Cheley S, Wallace MI, Bayley H (2007) Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits. ChemBioChem 8(9): 994−999 doi: 10.1002/cbic.200600474
    Dhakal S, Adendorff MR, Liu M, Yan H, Bathe M, Walter NG (2016) Rational design of DNA-actuated enzyme nanoreactors guided by single molecule analysis. Nanoscale 8(5): 3125−3137 doi: 10.1039/C5NR07263H
    Ding H, Wong PT, Lee EL, Gafni A, Steel DG (2009) Determination of the oligomer size of amyloidogenic protein beta-amyloid(1-40) by single-molecule spectroscopy. Biophys J 97(3): 912−921 doi: 10.1016/j.bpj.2009.05.035
    Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34(1): 221−243 doi: 10.1146/annurev.biophys.34.040204.144511
    Du B, Jiang X, Das A, Zhou Q, Yu M, Jin R, Zheng J (2017) Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat Nanotechnol 12(11): 1096−1102 doi: 10.1038/nnano.2017.170
    Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci USA 105(41): 15755−15760 doi: 10.1073/pnas.0806085105
    Duss O, Stepanyuk GA, Puglisi JD, Williamson JR (2019) Transient protein-RNA interactions guide nascent ribosomal RNA folding. Cell 179(6): 1357−1369 doi: 10.1016/j.cell.2019.10.035
    Enger J, Goksör M, Ramser K, Hagberg P, Hanstorp D (2004) Optical tweezers applied to a microfluidic system. Lab Chip 4(3): 196−200 doi: 10.1039/B307960K
    Fairman-Williams ME, Jankowsky E (2012) Unwinding initiation by the viral RNA helicase NPH-II. J Mol Biol 415(5): 819−832 doi: 10.1016/j.jmb.2011.11.045
    Fallmann J, Will S, Engelhardt J, Grüning B, Backofen R, Stadler PF (2017) Recent advances in RNA folding. J Biotechnol 261: 97−104 doi: 10.1016/j.jbiotec.2017.07.007
    Fang Y, Cai Q, Qin PZ (2005) The procapsid binding domain of ϕ29 packaging RNA has a modular architecture and requires 2'-hydroxyl groups in packaging RNA interaction. Biochemistry (Mosc) 44(26): 9348−9358 doi: 10.1021/bi0475020
    Fang Y, Shu D, Xiao F, Guo P, Qin PZ (2008) Modular assembly of chimeric phi29 packaging RNAs that support DNA packaging. Biochem Biophys Res Commun 372(4): 589−594 doi: 10.1016/j.bbrc.2008.05.094
    Fricke F, Beaudouin J, Eils R, Heilemann M (2015) One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy. Sci Rep 5(1): 14072. https://doi.org/10.1038/srep14072 doi: 10.1038/srep14072
    Friedman LJ, Gelles J (2015) Multi-wavelength single-molecule fluorescence analysis of transcription mechanisms. Methods 86: 27−36 doi: 10.1016/j.ymeth.2015.05.026
    Funatsu T, Harada Y, Tokunaga M, Saito K, Yanagida T (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374(6522): 555−559 doi: 10.1038/374555a0
    Ghimire C, Park S, Iida K, Yangyuoru P, Otomo H, Yu Z, Nagasawa K, Sugiyama H, Mao H (2014) Direct quantification of loop interaction and π–π stacking for G-quadruplex stability at the submolecular level. J Am Chem Soc 136(44): 15537−15544 doi: 10.1021/ja503585h
    Ghimire C, Wang H, Li H, Vieweger M, Xu C, Guo P (2020) RNA nanoparticles as rubber for compelling vessel extravasation to enhance tumor targeting and for fast renal excretion to reduce toxicity. ACS Nano 14(10):13180−13191
    Gibbs DR, Kaur A, Megalathan A, Sapkota K, Dhakal S (2018) Build your own microscope: step-by-step guide for building a prism-based TIRF microscope. Methods Protoc 1(4): 40. https://doi.org/10.3390/mps1040040 doi: 10.3390/mps1040040
    Gordon MP, Ha T, Selvin PR (2004) Single-molecule high-resolution imaging with photobleaching. Proc Natl Acad Sci USA 101(17): 6462−6465 doi: 10.1073/pnas.0401638101
    Gross P, Farge G, Peterman EJG, Wuite GJL (2010) Combining optical tweezers, single-molecule fluorescence microscopy, and microfluidics for studies of DNA–protein interactions. Methods Enzymol 475: 427−453
    Guo P, Noji H, Yengo CM, Zhao Z, Grainge I (2016) Biological nanomotors with a revolution, linear, or rotation motion mechanism. Microbiol Mol Biol Rev 80(1): 161−186 doi: 10.1128/MMBR.00056-15
    Guo P, Zhang C, Chen C, Garver K, Trottier M (1998) Inter-RNA interaction of phage of Phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 2(1): 149−155 doi: 10.1016/S1097-2765(00)80124-0
    Ha T, Tinnefeld P (2012) Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu Rev Phys Chem 63: 595−617 doi: 10.1146/annurev-physchem-032210-103340
    Haller A, Rieder U, Aigner M, Blanchard SC, Micura R (2011) Conformational capture of the SAM-II riboswitch. Nat Chem Biol 7(6): 393−400 doi: 10.1038/nchembio.562
    Hashemi Shabestari M, Meijering AEC, Roos WH, Wuite GJL, Peterman EJG (2017) Recent advances in biological single-molecule applications of optical tweezers and fluorescence microscopy. Methods Enzymol 582: 85−119
    He X, Yin X, Wu J, Wickström SL, Duo Y, Du Q, Qin S, Yao S, Jing X, Hosaka K, Wu J, Jensen LD, Lundqvist A, Salter AI, Bräutigam L, Tao W, Chen Y, Kiessling R, Cao Y (2020) Visualization of human T lymphocyte-mediated eradication of cancer cells in vivo. Proc Natl Acad Sci USA 117(37): 22910−22919 doi: 10.1073/pnas.2009092117
    Hermanson GT (2013) Chapter 2 − Functional targets for bioconjugation. In: Hermanson GT et al. (eds). Bioconjugate techniques (Third Edition). Boston: Academic Press. pp 127-228
    Hess ST, Gould TJ, Gunewardene M, Bewersdorf J, Mason MD (2009) Ultrahigh resolution imaging of biomolecules by fluorescence photoactivation localization microscopy. In: Foote RS and Lee JW et al. (eds). Micro and nano technologies in bioanalysis: methods and protocols. Totowa, NJ: Humana Press. pp 483-522
    Hohng S, Zhou R, Nahas MK, Yu J, Schulten K, Lilley DMJ, Ha T (2007) Fluorescence-force spectroscopy maps two-dimensional reaction landscape of the holliday junction. Science 318(5848): 279−283 doi: 10.1126/science.1146113
    Hua B, Panja S, Wang Y, Woodson SA, Ha T (2018) Mimicking co-transcriptional RNA folding using a superhelicase. J Am Chem Soc 140(32): 10067−10070 doi: 10.1021/jacs.8b03784
    Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864): 810−813 doi: 10.1126/science.1153529
    Huang F, Wang G, Coleman T, Li N (2003) Synthesis of adenosine derivatives as transcription initiators and preparation of 5' fluorescein- and biotin-labeled RNA through one-step in vitro transcription. RNA 9(12): 1562−1570 doi: 10.1261/rna.5106403
    Ibarra B, Castón JR, Llorca O, Valle M, Valpuesta JM, Carrascosa JL (2000) Topology of the components of the DNA packaging machinery in the phage ϕ29 prohead. J Mol Biol 298(5): 807−815 doi: 10.1006/jmbi.2000.3712
    Jagannathan B, Marqusee S (2013) Protein folding and unfolding under force. Biopolymers 99(11): 860−869 doi: 10.1002/bip.22321
    Jasinski DL, Li H, Guo P (2018) The effect of size and shape of RNA nanoparticles on biodistribution. Mol Ther 26(3): 784−792 doi: 10.1016/j.ymthe.2017.12.018
    Jiang Y, Douglas NR, Conley NR, Miller EJ, Frydman J, Moerner WE (2011) Sensing cooperativity in ATP hydrolysis for single multisubunit enzymes in solution. Proc Natl Acad Sci USA 108(41): 16962−16967 doi: 10.1073/pnas.1112244108
    Jonchhe S, Ghimire C, Cui Y, Sasaki S, McCool M, Park S, Iida K, Nagasawa K, Sugiyama H, Mao H (2019) Binding of a telomestatin derivative changes the mechanical anisotropy of a human telomeric G-quadruplex. Angew Chem Int Ed Engl 58(3): 877−881 doi: 10.1002/anie.201811046
    Jülicher F, Bruinsma R (1998) Motion of RNA polymerase along DNA: a stochastic model. Biophys J 74(3): 1169−1185 doi: 10.1016/S0006-3495(98)77833-6
    Kaur A, Dhakal S (2020) Recent applications of FRET-based multiplexed techniques. Trends Analyt Chem 123: 115777. https://doi.org/10.1016/j.trac.2019.115777 doi: 10.1016/j.trac.2019.115777
    Keller N, delToro DJ, Smith DE (2018) Single-molecule measurements of motor-driven viral DNA packaging in bacteriophages Phi29, Lambda, and T4 with optical tweezers. In: Lavelle C et al. (eds). Molecular motors: methods and protocols. New York: Springer New York. pp 393-422
    Keyser UF, Does Jvd, Dekker C, Dekker NH (2006) Optical tweezers for force measurements on DNA in nanopores. Rev Sci Instrum 77(10): 105105. https://doi.org/10.1063/1.2358705 doi: 10.1063/1.2358705
    Keyser UF, van der Does J, Dekker C, Dekker NH (2009) Inserting and manipulating DNA in a nanopore with optical tweezers. In: Foote RS, Lee JW et al. (eds). Micro and nano technologies in bioanalysis: methods and protocols. Totowa, NJ: Humana Press. pp 95-112
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15): 8206−8210 doi: 10.1073/pnas.97.15.8206
    Knight AE, Mashanov G, Molloy JE (2005) Single molecule measurements and biological motors. Eur Biophys J 35(1): 89−89 doi: 10.1007/s00249-005-0004-z
    Koirala D, Dhakal S, Ashbridge B, Sannohe Y, Rodriguez R, Sugiyama H, Balasubramanian S, Mao H (2011) A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat Chem 3(10): 782−787 doi: 10.1038/nchem.1126
    Kong L, Zhang P, Wang G, Yu J, Setlow P, Li Y-Q (2011) Characterization of bacterial spore germination using phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers. Nat Protoc 6(5): 625−639 doi: 10.1038/nprot.2011.307
    Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS, Kusumi A (2005) Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 88(3): 2126−2136 doi: 10.1529/biophysj.104.048967
    Kudalkar EM, Davis TN, Asbury CL (2016) Single-molecule total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2016(5): pdb.top077800. https://doi.org/10.1101/pdb.top077800 doi: 10.1101/pdb.top077800
    Le M-T, Kasprzak WK, Kim T, Gao F, Young MYL, Yuan X, Shapiro BA, Seog J, Simon AE (2017) Folding behavior of a T-shaped, ribosome-binding translation enhancer implicated in a wide-spread conformational switch. ELife 6: e22883. https://doi.org/10.7554/eLife.22883 doi: 10.7554/eLife.22883
    Leake MC, Chandler JH, Wadhams GH, Bai F, Berry RM, Armitage JP (2006) Stoichiometry and turnover in single, functioning membrane protein complexes. Nature 443(7109): 355−358 doi: 10.1038/nature05135
    Lee S-H, Shin JY, Lee A, Bustamante C (2012) Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM). Proc Natl Acad Sci USA 109(43): 17436−17441 doi: 10.1073/pnas.1215175109
    Lee TJ, Zhang H, Chang C-L, Savran C, Guo P (2009) Engineering of the fluorescent-energy-conversion arm of phi29 DNA packaging motor for single-molecule studies. Small 5(21): 2453−2459 doi: 10.1002/smll.200900467
    Leulliot N, Varani G (2001) Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40(27): 7947−7956 doi: 10.1021/bi010680y
    Li N, Yu C, Huang F (2005) Novel cyanine-AMP conjugates for efficient 5' RNA fluorescent labeling by one-step transcription and replacement of [gamma-32P]ATP in RNA structural investigation. Nucleic Acids Res 33(4): e37. https://doi.org/10.1093/nar/gni036 doi: 10.1093/nar/gni036
    Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910−919 doi: 10.1038/nmeth817
    Liesener J, Reicherter M, Haist T, Tiziani HJ (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185(1): 77−82
    Lillemeier BF, Mörtelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1): 90−96 doi: 10.1038/ni.1832
    Liu Q, Xie Z, Qiu M, Shim I, Yang Y, Xie S, Yang Q, Wang D, Chen S, Fan T, Ding B, Guo Z, Adah D, Yao X, Zhang Y, Wu H, Wu Z, Wei C, Wang H, Kim HS, Zou Q, Yan Q, Cai Z, Kim JS, Liu L-P, Zhang H, Cao Y (2020) Prodrug-loaded zirconium carbide nanosheets as a novel biophotonic nanoplatform for effective treatment of cancer. Adv Sci 7(24): 2001191. https://doi.org/10.1002/advs.202001191 doi: 10.1002/advs.202001191
    Liu Y, Sonek GJ, Berns MW, Konig K, Tromberg BJ (1995) Two-photon fluorescence excitation in continuous-wave infrared optical tweezers. Opt Lett 20(21): 2246−2248 doi: 10.1364/OL.20.002246
    Ma G, Hu C, Li S, Gao X, Li H, Hu X (2019) Simultaneous, hybrid single-molecule method by optical tweezers and fluorescence. Nanotechnol Precis Eng 2(4): 145−156 doi: 10.1016/j.npe.2019.11.004
    Maier B (2005) Using laser tweezers to measure twitching motility in Neisseria. Curr Opin Microbiol 8(3): 344−349 doi: 10.1016/j.mib.2005.04.002
    Manosas M, Wen JD, Li PTX, Smith SB, Bustamante C, Tinoco I, Ritort F (2007) Force unfolding kinetics of RNA using optical tweezers. II. Modeling experiments. Biophys J 92(9): 3010−3021 doi: 10.1529/biophysj.106.094243
    Martin-Fernandez ML, Tynan CJ, Webb SED (2013) A ‘pocket guide’ to total internal reflection fluorescence. J Microsc 252(1): 16−22 doi: 10.1111/jmi.12070
    McGuire H, Aurousseau MRP, Bowie D, Blunck R (2012) Automating single subunit counting of membrane proteins in mammalian cells. J Biol Chem 287(43): 35912−35921 doi: 10.1074/jbc.M112.402057
    Mehta P, Jovanovic G, Lenn T, Bruckbauer A, Engl C, Ying L, Buck M (2013) Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nat Commun 4: 1997−1997 doi: 10.1038/ncomms2997
    Mehta SB, McQuilken M, La Riviere PJ, Occhipinti P, Verma A, Oldenbourg R, Gladfelter AS, Tani T (2016) Dissection of molecular assembly dynamics by tracking orientation and position of single molecules in live cells. Proc Natl Acad Sci USA 113(42): E6352−E6361 doi: 10.1073/pnas.1607674113
    Michelotti N, de Silva C, Johnson-Buck AE, Manzo AJ, Walter NG (2010) A bird's eye view tracking slow nanometer-scale movements of single molecular nano-assemblies. Methods Enzymol 475: 121−148
    Milstein JN, Chu M, Raghunathan K, Meiners J-C (2012) Two-color DNA nanoprobe of intracellular dynamics. Nano Lett 12(5): 2515−2519 doi: 10.1021/nl300683p
    Moerner WE, Fromm DP (2003) Methods of single-molecule fluorescence spectroscopy and microscopy. Rev Sci Instrum 74(8): 3597−3619 doi: 10.1063/1.1589587
    Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77(1): 205−228 doi: 10.1146/annurev.biochem.77.043007.090225
    Morais MC, Koti JS, Bowman VD, Reyes-Aldrete E, Anderson DL, Rossmann MG (2008) Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. Structure 16(8): 1267−1274 doi: 10.1016/j.str.2008.05.010
    Murade CU, Subramaniam V, Otto C, Bennink ML (2009) Interaction of oxazole yellow dyes with DNA studied with hybrid optical tweezers and fluorescence microscopy. Biophys J 97(3): 835−843 doi: 10.1016/j.bpj.2009.05.024
    Myong S, Stevens BC, Ha T (2006) Bridging conformational dynamics and function using single-molecule spectroscopy. Structure 14(4): 633−643 doi: 10.1016/j.str.2006.02.005
    Nambiar R, Gajraj A, Meiners J-C (2004) All-optical constant-force laser tweezers. Biophys J 87(3): 1972−1980 doi: 10.1529/biophysj.103.037697
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491−505 doi: 10.1038/nmeth.1218
    Newby Lambert M, Vöcker E, Blumberg S, Redemann S, Gajraj A, Meiners J-C, Walter NG (2006) Mg2+-induced compaction of single RNA molecules monitored by tethered particle microscopy. Biophys J 90(10): 3672−3685 doi: 10.1529/biophysj.105.067793
    Nguyen HT, Hori N, Thirumalai D (2019) Theory and simulations for RNA folding in mixtures of monovalent and divalent cations. Proc Natl Acad Sci USA 116(42): 21022−21030 doi: 10.1073/pnas.1911632116
    Nieminen TA, Knöner G, Heckenberg NR, Rubinsztein-Dunlop H (2007) Physics of optical tweezers. Methods Cell Biol 82: 207−236
    Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4): 645−648 doi: 10.1103/PhysRevLett.79.645
    Ouyang J, Ji X, Zhang X, Feng C, Tang Z, Kong N, Xie A, Wang J, Sui X, Deng L, Liu Y, Kim JS, Cao Y, Tao W (2020) In situ sprayed NIR-responsive, analgesic black phosphorus-based gel for diabetic ulcer treatment. Proc Natl Acad Sci 117(46): 28667−28677 doi: 10.1073/pnas.2016268117
    Paredes E, Evans M, Das SR (2011) RNA labeling, conjugation and ligation. Methods 54(2): 251−259 doi: 10.1016/j.ymeth.2011.02.008
    Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8): 2412−2417 doi: 10.1158/0008-5472.CAN-12-4561
    Purohit PK, Kondev J, Phillips R (2003) Mechanics of DNA packaging in viruses. Proc Natl Acad Sci USA 100(6): 3173−3178 doi: 10.1073/pnas.0737893100
    Qu X, Wu D, Mets L, Scherer NF (2004) Nanometer-localized multiple single-molecule fluorescence microscopy. Proc Natl Acad Sci USA 101(31): 11298−11303 doi: 10.1073/pnas.0402155101
    Rajoo S, Vallotton P, Onischenko E, Weis K (2018) Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy. Proc Natl Acad Sci USA 115(17): 3969−3977 doi: 10.1073/pnas.1719398115
    Rasnik I, McKinney SA, Ha T (2006) Nonblinking and long-lasting single-molecule fluorescence imaging. Nat Methods 3(11): 891−893 doi: 10.1038/nmeth934
    Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S-R, Chu S, Tjian R (2012) Transcription initiation by human RNA polymerase II visualized at single-molecule resolution. Genes Dev 26(15): 1691−1702 doi: 10.1101/gad.194936.112
    Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6): 507−516 doi: 10.1038/nmeth.1208
    Rueda D, Walter NG (2005) Single molecule fluorescence control for nanotechnology. J Nanosci Nanotechnol 5(12): 1990−2000 doi: 10.1166/jnn.2005.505
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10): 793−796 doi: 10.1038/nmeth929
    Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen GPC (2019) Super-resolution microscopy demystified. Nat Cell Biol 21(1): 72−84 doi: 10.1038/s41556-018-0251-8
    Sengupta P, Jovanovic-Talisman T, Lippincott-Schwartz J (2013) Quantifying spatial organization in point-localization superresolution images using pair correlation analysis. Nat Protoc 8(2): 345−354 doi: 10.1038/nprot.2013.005
    Shrestha P, Emura T, Koirala D, Cui Y, Hidaka K, Maximuck WJ, Endo M, Sugiyama H, Mao H (2016) Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Res 44(14): 6574−6582 doi: 10.1093/nar/gkw610
    Shu D, Zhang H, Jin J, Guo P (2007) Counting of six pRNAs of phi29 DNA-packaging motor with customized single-molecule dual-view system. EMBO J 26(2): 527−537 doi: 10.1038/sj.emboj.7601506
    Shu Y, Cinier M, Fox SR, Ben-Johnathan N, Guo P (2011) Assembly of therapeutic pRNA-siRNA nanoparticles using bipartite approach. Mol Ther 19(7): 1304−1311 doi: 10.1038/mt.2011.23
    Simonson PD, Deberg HA, Ge P, Alexander JK, Jeyifous O, Green WN, Selvin PR (2010) Counting bungarotoxin binding sites of nicotinic acetylcholine receptors in mammalian cells with high signal/noise ratios. Biophys J 99(10): L81−L83 doi: 10.1016/j.bpj.2010.08.076
    Simpson AA, Tao Y, Leiman PG, Badasso MO, He Y, Jardine PJ, Olson NH, Morais MC, Grimes S, Anderson DL, Baker TS, Rossmann MG (2000) Structure of the bacteriophage phi29 DNA packaging motor. Nature 408(6813): 745−750 doi: 10.1038/35047129
    Singh P, Prasuhn D, Yeh RM, Destito G, Rae CS, Osborn K, Finn MG, Manchester M (2007) Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. J Control Release 120(1): 41−50
    Sirinakis G, Ren Y, Gao Y, Xi Z, Zhang Y (2012) Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum 83(9): 093708. https://doi.org/10.1063/1.4752190 doi: 10.1063/1.4752190
    Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, Emili A, Xie XS (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329(5991): 533−538 doi: 10.1126/science.1188308
    Tokunaga M, Kitamura K, Saito K, Iwane AH, Yanagida T (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem Biophys Res Commun 235(1): 47−53 doi: 10.1006/bbrc.1997.6732
    Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4(4): 319−321 doi: 10.1038/nmeth1024
    Valero J, Pal N, Dhakal S, Walter NG, Famulok M (2018) A bio-hybrid DNA rotor–stator nanoengine that moves along predefined tracks. Nat Nanotechnol 13(6): 496−503 doi: 10.1038/s41565-018-0109-z
    van Dijk MA, Kapitein LC, van Mameren J, Schmidt CF, Peterman EJG (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108(20): 6479−6484 doi: 10.1021/jp049805+
    Wang MD, Yin H, Landick R, Gelles J, Block SM (1997) Stretching DNA with optical tweezers. Biophys J 72(3): 1335−1346 doi: 10.1016/S0006-3495(97)78780-0
    Wen J-D, Manosas M, Li PTX, Smith SB, Bustamante C, Ritort F, Tinoco I (2007) Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results. Biophys J 92(9): 2996−3009 doi: 10.1529/biophysj.106.094052
    Whitley KD, Comstock MJ, Chemla YR (2017) High-resolution optical tweezers combined with single-molecule confocal microscopy. Methods Enzymol 582: 137−169
    Williamson JR (2000) Induced fit in RNA–protein recognition. Nat Struct Biol 7(10): 834−837 doi: 10.1038/79575
    Xiao F, Zhang H, Guo P (2008) Novel mechanism of hexamer ring assembly in protein/RNA interactions revealed by single molecule imaging. Nucleic Acids Res 36(20): 6620−6632 doi: 10.1093/nar/gkn669
    Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628): 2061−2065 doi: 10.1126/science.1084398
    Yildiz A, Selvin PR (2005) Fluorescence imaging with one nanometer accuracy: application to molecular motors. Acc Chem Res 38(7): 574−582 doi: 10.1021/ar040136s
    Yokota H, Chujo YA, Harada Y (2013) Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase. Biophys J 104(4): 924−933 doi: 10.1016/j.bpj.2013.01.014
    Yu Z, Schonhoft JD, Dhakal S, Bajracharya R, Hegde R, Basu S, Mao H (2009) ILPR G-quadruplexes formed in seconds demonstrate high mechanical stabilities. J Am Chem Soc 131(5): 1876−1882 doi: 10.1021/ja806782s
    Zhang C, Fu H, Yang Y, Zhou E, Tan Z, You H, Zhang X (2019) The mechanical properties of RNA-DNA hybrid duplex stretched by magnetic tweezers. Biophys J 116(2): 196−204 doi: 10.1016/j.bpj.2018.12.005
    Zhang F, Anderson D (1998) In Vitro selection of bacteriophage ϕ29 prohead RNA aptamers for prohead binding. J Biol Chem 273(5): 2947−2953 doi: 10.1074/jbc.273.5.2947
    Zhang H, Guo P (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67(2): 169−176 doi: 10.1016/j.ymeth.2014.01.010
    Zhang H, Shu D, Browne M, Guo P (2010a) Construction of a laser combiner for dual fluorescent single molecule imaging of pRNA of phi29 DNA packaging motor. Biomedical microdevices 12(1): 97−106 doi: 10.1007/s10544-009-9364-y
    Zhang H, Shu D, Huang F, Guo P (2007) Instrumentation and metrology for single RNA counting in biological complexes or nanoparticles by a single-molecule dual-view system. RNA 13(10): 1793−1802 doi: 10.1261/rna.587607
    Zhang H, Shu D, Wang W, Guo P (2010b) Design and application of single fluorophore dual-view imaging system containing both the objective- and prism-type TIRF. Proc SPIE Int Soc Opt Eng 7571: 757107−757108
    Zhang J, Campbell RE, Ting AY, Tsien RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3(12): 906−918 doi: 10.1038/nrm976
    Zhang X, Ma L, Zhang Y (2013) High-resolution optical tweezers for single-molecule manipulation. Yale J Biol Med 86(3): 367−383
    Zhao Z, Khisamutdinov E, Schwartz C, Guo P (2013) Mechanism of one-way traffic of hexameric Phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS Nano 7(5): 4082−4092 doi: 10.1021/nn4002775
    Zhong M-C, Wei X-B, Zhou J-H, Wang Z-Q, Li Y-M (2013) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4(1): 1768. https://doi.org/10.1038/ncomms2786 doi: 10.1038/ncomms2786
    Zijlstra N, Blum C, Segers-Nolten IMJ, Claessens MMAE, Subramaniam V (2012) Molecular composition of sub-stoichiometrically labeled α-synuclein oligomers determined by single-molecule photobleaching. Angew Chem Int Ed Engl 51(35): 8821−8824 doi: 10.1002/anie.201200813
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (1079) PDF downloads(74) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint