Volume 7 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
Zhuo Ma, Md. Nur Islam, Tao Xu, Eli Song. AP-3 adaptor complex-mediated vesicle trafficking[J]. Biophysics Reports, 2021, 7(2): 91-100. doi: 10.52601/bpr.2021.200051
Citation: Zhuo Ma, Md. Nur Islam, Tao Xu, Eli Song. AP-3 adaptor complex-mediated vesicle trafficking[J]. Biophysics Reports, 2021, 7(2): 91-100. doi: 10.52601/bpr.2021.200051

AP-3 adaptor complex-mediated vesicle trafficking

doi: 10.52601/bpr.2021.200051
Funds:  We apologize to the scientists in this field, whose publications were not cited due to space limitations. This work was supported by grants from the Ministry of Science and Technology of the People’s Republic of China (2018YFA0507101, 2016YFA0500203), the National Natural Science Foundation of China (31770900, 31730054), the Beijing Natural Science Foundation (5212016), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2011087). All authors participated in the design and discussion of manuscript conception and outline, contributed to editing of the draft manuscript.
More Information
  • Corresponding author: songali@ibp.ac.cn (E. Song)
  • Received Date: 29 October 2020
  • Accepted Date: 16 March 2021
  • Available Online: 17 May 2021
  • Publish Date: 28 February 2021
  • The transport of cargo proteins to specific subcellular destinations is crucial for the different secretory and endocytic traffic pathways. One of the most important steps in maintaining the accuracy of this process is the recruitment of adaptor protein (AP) complexes to the membrane for recognizing and packaging cargo proteins into nascent vesicles. Adaptor protein complex 3 (AP-3) is a heterotetrametric complex implicated in the trafficking of cargo proteins from the trans-Golgi network (TGN) and/or endosomes to lysosomes or lysosome-related organelles (LROs). This complex is also involved in the biogenesis of synaptic vesicles (SVs) in neurons and of dense core vesicles (DCVs) in endocrine cells as well as in the recycling of receptors in immune cells and the regulation of planar cell polarity (PCP) proteins. Functional defects in AP-3 cause multiple abnormalities in cellular vesicle trafficking and related organelle function, leading to various disorders, such as Hermansky-Pudlak syndrome (HPS). However, the molecular mechanism underlying AP-3 has not been fully elucidated, and further investigations are needed to understand AP-3-mediated trafficking, its associated molecules and its related roles in inherited diseases. Here, we review the current understanding of AP-3 in cellular vesicle trafficking, especially focusing on mammalian systems.
  • loading
  • [1]
    Ammann S, Schulz A, Krageloh-Mann I, Dieckmann NM, Niethammer K, Fuchs S, Eckl KM, Plank R, Werner R, Altmuller J, Thiele H, Nürnberg P, Bank J, Strauss A, von Bernuth H, Stadt UZ, Grieve S, Griffiths GM, Lehmberg K, Hennies HC, Ehl S (2016) Mutations in AP3D1 associated with immunodeficiency and seizures define a new type of Hermansky-Pudlak syndrome. Blood 127: 997−1006 doi: 10.1182/blood-2015-09-671636
    Asensio CS, Sirkis DW, Edwards RH (2010) RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J Cell Biol 191: 1173−1187 doi: 10.1083/jcb.201006131
    Asensio CS, Sirkis DW, Maas JW Jr., Egami K, To TL, Brodsky FM, Shu X, Cheng Y, Edwards RH (2013) Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev Cell 27: 425−437 doi: 10.1016/j.devcel.2013.10.007
    Assoum M, Philippe C, Isidor B, Perrin L, Makrythanasis P, Sondheimer N, Paris C, Douglas J, Lesca G, Antonarakis S, Hamamy H, Jouan T, Duffourd Y, Auvin S, Saunier A, Begtrup A, Nowak C, Chatron N, Ville D, Mireskandari K, Milani P, Jonveaux P, Lemeur G, Milh M, Amamoto M, Kato M, Nakashima M, Miyake N, Matsumoto N, Masri A, Thauvin-Robinet C, Rivière J-B, Faivre L, Thevenon J (2016) Autosomal-recessive mutations in AP3B2, adaptor-related protein complex 3 beta 2 subunit, cause an early-onset epileptic encephalopathy with optic atrophy. Am J Hum Genet 99: 1368−1376 doi: 10.1016/j.ajhg.2016.10.009
    Austin C, Boehm M, Tooze SA (2002) Site-specific cross-linking reveals a differential direct interaction of class 1, 2, and 3 ADP-ribosylation factors with adaptor protein complexes 1 and 3. Biochemistry 41: 4669−4677 doi: 10.1021/bi016064j
    Benson KF, Li FQ, Person RE, Albani D, Duan Z, Wechsler J, Meade-White K, Williams K, Acland GM, Niemeyer G, Lothrop CD, Horwitz M (2003) Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase. Nat Genet 35: 90−96 doi: 10.1038/ng1224
    Blumstein J, Faundez V, Nakatsu F, Saito T, Ohno H, Kelly RB (2001) The neuronal form of adaptor protein-3 is required for synaptic vesicle formation from endosomes. J Neurosci 21: 8034−8042 doi: 10.1523/JNEUROSCI.21-20-08034.2001
    Boehm M, Bonifacino JS (2001) Adaptins: the final recount. Mol Biol Cell 12: 2907−2920 doi: 10.1091/mbc.12.10.2907
    Bonifacino JS, Dell'Angelica EC (1999) Molecular bases for the recognition of tyrosine-based sorting signals. J Cell Biol 145: 923−926 doi: 10.1083/jcb.145.5.923
    Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4: 409−414 doi: 10.1038/nrm1099
    Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72: 395−447 doi: 10.1146/annurev.biochem.72.121801.161800
    Briken V, Jackman RM, Dasgupta S, Hoening S, Porcelli SA (2002) Intracellular trafficking pathway of newly synthesized CD1b molecules. EMBO J 21: 825−834 doi: 10.1093/emboj/21.4.825
    Clark RH, Stinchcombe JC, Day A, Blott E, Booth S, Bossi G, Hamblin T, Davies EG, Griffiths GM (2003) Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat Immunol 4: 1111−1120 doi: 10.1038/ni1000
    Collins BM, McCoy AJ, Kent HM, Evans PR, Owen DJ (2002) Molecular architecture and functional model of the endocytic AP2 complex. Cell 109: 523−535 doi: 10.1016/S0092-8674(02)00735-3
    Cowles CR, Odorizzi G, Payne GS, Emr SD (1997) The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91: 109−118 doi: 10.1016/S0092-8674(01)80013-1
    Danglot L, Galli T (2007) What is the function of neuronal AP-3? Biol Cell 99: 349−361 doi: 10.1042/BC20070029
    De Craene JO, Bertazzi DL, Bar S, Friant S (2017) Phosphoinositides, major actors in membrane trafficking and lipid signaling pathways. Int J Mol Sci 18(3): 634. https://doi.org/10.3390/ijms18030634
    Dell'Angelica EC, Klumperman J, Stoorvogel W, Bonifacino JS (1998) Association of the AP-3 adaptor complex with clathrin. Science 280: 431−434 doi: 10.1126/science.280.5362.431
    Dell'Angelica EC, Mullins C, Bonifacino JS (1999a) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274: 7278−7285 doi: 10.1074/jbc.274.11.7278
    Dell'Angelica EC, Ohno H, Ooi CE, Rabinovich E, Roche KW, Bonifacino JS (1997a) AP-3: an adaptor-like protein complex with ubiquitous expression. EMBO J 16: 917−928 doi: 10.1093/emboj/16.5.917
    Dell'Angelica EC, Ooi CE, Bonifacino JS (1997b) Beta3A-adaptin, a subunit of the adaptor-like complex AP-3. J Biol Chem 272: 15078−15084 doi: 10.1074/jbc.272.24.15078
    Dell'Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS (1999b) Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor. Mol Cell 3: 11−21 doi: 10.1016/S1097-2765(00)80170-7
    Di Pietro SM, Falcon-Perez JM, Tenza D, Setty SR, Marks MS, Raposo G, Dell'Angelica EC (2006) BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell 17: 4027−4038 doi: 10.1091/mbc.e06-05-0379
    Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12: 362−375 doi: 10.1038/nrm3117
    Evstratova A, Chamberland S, Faundez V, Toth K (2014) Vesicles derived via AP-3-dependent recycling contribute to asynchronous release and influence information transfer. Nat Commun 5: 5530. https://doi.org/10.1038/ncomms6530
    Faundez VV, Kelly RB (2000) The AP-3 complex required for endosomal synaptic vesicle biogenesis is associated with a casein kinase Ialpha-like isoform. Mol Biol Cell 11: 2591−2604 doi: 10.1091/mbc.11.8.2591
    Feng L, Seymour AB, Jiang S, To A, Peden AA, Novak EK, Zhen L, Rusiniak ME, Eicher EM, Robinson MS, Gorin MB, Swank RT (1999) The beta3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Hum Mol Genet 8: 323−330 doi: 10.1093/hmg/8.2.323
    Grabner CP, Price SD, Lysakowski A, Cahill AL, Fox AP (2006) Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proc Natl Acad Sci USA 103: 10035−10040 doi: 10.1073/pnas.0509844103
    Groux-Degroote S, van Dijk S.M, Wolthoorn J, Neumann S, Theos AC, De Maziere AM, Klumperman J, van Meer G, Sprong H (2008) Glycolipid-dependent sorting of melanosomal from lysosomal membrane proteins by lumenal determinants. Traffic 9: 951−963 doi: 10.1111/j.1600-0854.2008.00740.x
    Guo Y, Sirkis DW, Schekman R (2014) Protein sorting at the trans-Golgi network. Annu Rev Cell Dev Biol 30: 169−206 doi: 10.1146/annurev-cellbio-100913-013012
    Hao W, Tan Z, Prasad K, Reddy KK, Chen J, Prestwich GD, Falck JR, Shears SB, Lafer EM (1997) Regulation of AP-3 function by inositides. Identification of phosphatidylinositol 3,4,5-trisphosphate as a potent ligand. J Biol Chem 272: 6393−6398 doi: 10.1074/jbc.272.10.6393
    Heldwein EE, Macia E, Wang J, Yin HL, Kirchhausen T, Harrison SC (2004) Crystal structure of the clathrin adaptor protein 1 core. Proc Natl Acad Sci USA 101: 14108−14113 doi: 10.1073/pnas.0406102101
    Kantheti P, Qiao X, Diaz ME, Peden AA, Meyer GE, Carskadon SL, Kapfhamer D, Sufalko D, Robinson MS, Noebels JL, Burmeister M (1998) Mutation in AP-3 delta in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21: 111−122 doi: 10.1016/S0896-6273(00)80519-X
    Kirchhausen T (1999) Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 15: 705−732 doi: 10.1146/annurev.cellbio.15.1.705
    Kobayashi T, Hearing VJ (2007) Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J Cell Sci 120: 4261−4268 doi: 10.1242/jcs.017913
    Li H, Santos MS, Park CK, Dobry Y, Voglmaier SM (2017) VGLUT2 trafficking is differentially regulated by adaptor proteins AP-1 and AP-3. Front Cell Neurosci 11: 324. https://doi.org/10.3389/fncel.2017.00324
    Li P, Merrill SA, Jorgensen EM, Shen K (2016) Two Clathrin adaptor protein complexes instruct axon-dendrite polarity. Neuron 90: 564−580 doi: 10.1016/j.neuron.2016.04.020
    Mardones GA, Burgos PV, Lin Y, Kloer DP, Magadan JG, Hurley JH, Bonifacino JS (2013) Structural basis for the recognition of tyrosine-based sorting signals by the mu3A subunit of the AP-3 adaptor complex. J Biol Chem 288: 9563−9571 doi: 10.1074/jbc.M113.450775
    Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D'Esposito M, Galli T (2003) A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci USA 100: 9011−9016 doi: 10.1073/pnas.1431910100
    Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS (2011) Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J Biol Chem 286: 2022−2030 doi: 10.1074/jbc.M110.197178
    Muthusamy N, Faundez V, Bergson C (2012) Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes. J Neurochem 123: 60−72 doi: 10.1111/j.1471-4159.2012.07814.x
    Nakatsu F, Okada M, Mori F, Kumazawa N, Iwasa H, Zhu G, Kasagi Y, Kamiya H, Harada A, Nishimura K, Takeuchi A, Miyazaki T, Watanabe M, Yuasa S, Manabe T, Wakabayashi K, Kaneko S, Saito T, Ohno H (2004) Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. J Cell Biol 167: 293−302 doi: 10.1083/jcb.200405032
    Ohno H (2006) Clathrin-associated adaptor protein complexes. J Cell Sci 119: 3719−3721 doi: 10.1242/jcs.03085
    Ooi CE, Dell'Angelica EC, Bonifacino JS (1998) ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Cell Biol 142: 391−402 doi: 10.1083/jcb.142.2.391
    Ooi CE, Moreira JE, Dell'Angelica EC, Poy G, Wassarman DA, Bonifacino JS (1997) Altered expression of a novel adaptin leads to defective pigment granule biogenesis in the Drosophila eye color mutant garnet. EMBO J 16: 4508−4518 doi: 10.1093/emboj/16.15.4508
    Owen DJ, Collins BM, Evans PR (2004) Adaptors for clathrin coats: structure and function. Annu Rev Cell Dev Biol 20: 153−191 doi: 10.1146/annurev.cellbio.20.010403.104543
    Owen DJ, Evans PR (1998) A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282: 1327−1332 doi: 10.1126/science.282.5392.1327
    Park SY, Guo X (2014) Adaptor protein complexes and intracellular transport. Biosci Rep 34(4): e00123. https://doi.org/10.1042/BSR20140069
    Peden AA, Oorschot V, Hesser BA, Austin CD, Scheller RH, Klumperman J (2004) Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins. J Cell Biol 164: 1065−1076 doi: 10.1083/jcb.200311064
    Pertl-Obermeyer H, Wu XN, Schrodt J, Mudsam C, Obermeyer G, Schulze WX (2016) Identification of cargo for adaptor PRotein (AP) complexes 3 and 4 by sucrose gradient profiling. Mol Cell Proteomics 15: 2877−2889 doi: 10.1074/mcp.M116.060129
    Petnicki-Ocwieja T, Kern A, Killpack TL, Bunnell SC, Hu LT (2015) Adaptor protein-3-mediated trafficking of TLR2 ligands controls specificity of inflammatory responses but not adaptor complex assembly. J Immunol 195: 4331−4340 doi: 10.4049/jimmunol.1501268
    Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH (2013) Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152: 755−767 doi: 10.1016/j.cell.2012.12.042
    Salazar G, Craige B, Styers ML, Newell-Litwa KA, Doucette MM, Wainer BH, Falcon-Perez JM, Dell'Angelica EC, Peden AA, Werner E, Faundez V (2006) BLOC-1 complex deficiency alters the targeting of adaptor protein complex-3 cargoes. Mol Biol Cell 17: 4014−4026 doi: 10.1091/mbc.e06-02-0103
    Salazar G, Love R, Styers ML, Werner E, Peden A, Rodriguez S, Gearing M, Wainer BH, Faundez V (2004a) AP-3-dependent mechanisms control the targeting of a chloride channel (ClC-3) in neuronal and non-neuronal cells. J Biol Chem 279: 25430−25439 doi: 10.1074/jbc.M402331200
    Salazar G, Love R, Werner E, Doucette MM, Cheng S, Levey A, Faundez V (2004b) The zinc transporter ZnT3 interacts with AP-3 and it is preferentially targeted to a distinct synaptic vesicle subpopulation. Mol Biol Cell 15: 575−587 doi: 10.1091/mbc.e03-06-0401
    Seong E, Wainer BH, Hughes ED, Saunders TL, Burmeister M, Faundez V (2005) Genetic analysis of the neuronal and ubiquitous AP-3 adaptor complexes reveals divergent functions in brain. Mol Biol Cell 16: 128−140 doi: 10.1091/mbc.e04-10-0892
    Silm K, Yang J, Marcott PF, Asensio CS, Eriksen J, Guthrie DA, Newman AH, Ford CP, Edwards RH (2019) Synaptic vesicle recycling pathway determines neurotransmitter content and release properties. Neuron 102: 786−800 doi: 10.1016/j.neuron.2019.03.031
    Simpson F, Bright NA, West MA, Newman LS, Darnell RB, Robinson MS (1996) A novel adaptor-related protein complex. J Cell Biol 133: 749−760 doi: 10.1083/jcb.133.4.749
    Simpson F, Peden AA, Christopoulou L, Robinson MS (1997) Characterization of the adaptor-related protein complex, AP-3. J Cell Biol 137: 835−845 doi: 10.1083/jcb.137.4.835
    Sitaram A, Piccirillo R, Palmisano I, Harper DC, Dell'Angelica EC, Schiaffino MV, Marks MS (2009) Localization to mature melanosomes by virtue of cytoplasmic dileucine motifs is required for human OCA2 function. Mol Biol Cell 20: 1464−1477 doi: 10.1091/mbc.e08-07-0710
    Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N (2016) Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 137: 904−912 doi: 10.1111/jnc.13577
    Tower-Gilchrist C, Zlatic SA, Yu D, Chang Q, Wu H, Lin X, Faundez V, Chen P (2019) Adaptor protein-3 complex is required for Vangl2 trafficking and planar cell polarity of the inner ear. Mol Biol Cell 30: 2422−2434 doi: 10.1091/mbc.E16-08-0592
    Van Meer G, de Kroon AI (2011) Lipid map of the mammalian cell. J Cell Sci 124: 5−8 doi: 10.1242/jcs.071233
    Wang YJ, Wang J, S un, H Q, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114: 299−310 doi: 10.1016/S0092-8674(03)00603-2
    Zlatic SA, Grossniklaus EJ, Ryder PV, Salazar G, Mattheyses AL, Peden AA, Faundez V (2013) Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis. Mol Biol Cell 24: 2378−2388 doi: 10.1091/mbc.e12-12-0860
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article Metrics

    Article views (2490) PDF downloads(181) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint