Volume 7 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Moath Alamer, Xiao Yun Xu. The influence of tumour vasculature on fluid flow in solid tumours: a mathematical modelling study[J]. Biophysics Reports, 2021, 7(1): 35-54. doi: 10.52601/bpr.2021.200041
Citation: Moath Alamer, Xiao Yun Xu. The influence of tumour vasculature on fluid flow in solid tumours: a mathematical modelling study[J]. Biophysics Reports, 2021, 7(1): 35-54. doi: 10.52601/bpr.2021.200041

The influence of tumour vasculature on fluid flow in solid tumours: a mathematical modelling study

doi: 10.52601/bpr.2021.200041
More Information
  • Corresponding author: yun.xu@imperial.ac.uk (X. Y. Xu)
  • Received Date: 25 August 2020
  • Accepted Date: 29 November 2020
  • Available Online: 20 April 2021
  • Publish Date: 28 February 2021
  • Tumour vasculature is known to be aberrant, tortuous and erratic which can have significant implications for fluid flow. Fluid dynamics in tumour tissue plays an important part in tumour growth, metastasis and the delivery of therapeutics. Mathematical models are increasingly employed to elucidate the complex interplay between various aspects of the tumour vasculature and fluid flow. Previous models usually assume a uniformly distributed vasculature without explicitly describing its architecture or incorporate the distribution of vasculature without accounting for real geometric features of the network. In this study, an integrated computational model is developed by resolving fluid flow at the single capillary level across the whole tumour vascular network. It consists of an angiogenesis model and a fluid flow model which resolves flow as a function of the explicit vasculature by coupling intravascular flow and interstitial flow in tumour tissue. The integrated model has been used to examine the influence of microvascular distribution, necrosis and vessel pruning on fluid flow, as well as the effect of heterogeneous vessel permeability. Our results reveal the level of nonuniformity in tumour interstitial fluid pressure (IFP), with large variations in IFP profile between necrotic and non-necrotic tumours. Changes in microscopic features of the vascular network can significantly influence fluid flow in the tumour where removal of vessel blind ends has been found to reduce IFP and promote interstitial fluid flow. Our results demonstrate the importance of incorporating microscopic properties of the tumour vasculature and intravascular flow when predicting fluid flow in tumour tissue.
  • loading
  • [1]
    Anderson AR, Chaplain M (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60: 857−899 doi: 10.1006/bulm.1998.0042
    [2]
    Baish JW, Netti PA, Jain RK (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53: 128−141 doi: 10.1006/mvre.1996.2005
    [3]
    Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15: 102−111 doi: 10.1016/j.gde.2004.12.005
    [4]
    Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37: 77−104
    [5]
    Bhandari A, Bansal A, Singh A, Sinha N (2017a) Transport of liposome encapsulated drugs in voxelized computational model of human brain tumors. IEEE Trans NanoBiosci 16: 634−644
    [6]
    Bhandari A, Bansal A, Singh A, Sinha N (2017b) Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis. J Biomech 59: 80−89 doi: 10.1016/j.jbiomech.2017.05.017
    [7]
    Bhandari A, Bansal A, Singh A, Sinha N (2018) Numerical study of transport of anti- cancer drugs in heterogeneous vasculature of human brain tumors using DCE-MRI. J Biomech Eng 140: 051010. https://doi.org/10.1115/1.4038746
    [8]
    Boucher Y, Baxter LT, Jain RK (1990) Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res 50: 4478−4484
    [9]
    Brizel DM, Klitzman B, Cook JM, Edwards J, Rosner G, Dewhirst MW (1993) A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model. Int J Radiat Oncol Biol Phys 25: 269−276 doi: 10.1016/0360-3016(93)90348-Y
    [10]
    Cantelmo AR, Pircher A, Kalucka J, Carmeliet P (2017) Vessel pruning or healing: endothelial metabolism as a novel target? Exp OpinTher Targ 21: 239−247 doi: 10.1080/14728222.2017.1282465
    [11]
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249. https://doi.org/10.1038/35025220
    [12]
    Chary SR, Jain RK (1989) Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA 86: 5385−5389 doi: 10.1073/pnas.86.14.5385
    [13]
    Chauhan VP, Stylianopoulos T, Martin JD, Popović Z, Chen O, Kamoun WS, Bawendi MG, Fukumura D, Jain RK (2012) Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol 7: 383−388 doi: 10.1038/nnano.2012.45
    [14]
    Chugh BP, Lerch JP, Lisa XY, Pienkowski M, Harrison RV, Henkelman RM, Sled JG (2009) Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography. Neuroimage 47: 1312−1318 doi: 10.1016/j.neuroimage.2009.03.083
    [15]
    Dewhirst MW, Secomb TW (2017) Transport of drugs from blood vessels to tumour tissue. Nature Rev Cancer 17(12): 738−750 doi: 10.1038/nrc.2017.93
    [16]
    Gas P (2017) Temperature inside tumor as time function in RF hyperthermia. Przeglad Elektrotechniczny 2010, 86(12): 42−45
    [17]
    Gulliksrud K, Brurberg KG, Rofstad EK (2009) Dynamic contrast-enhanced magnetic resonance imaging of tumor interstitial fluid pressure. Radiother Oncol 91: 107−113 doi: 10.1016/j.radonc.2008.08.015
    [18]
    Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4): 1363−1380 doi: 10.1016/S0002-9440(10)65006-7
    [19]
    Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure — an obstacle in cancer therapy. Nat Rev Cancer 4: 806−813 doi: 10.1038/nrc1456
    [20]
    Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA 95: 4607−4612 doi: 10.1073/pnas.95.8.4607
    [21]
    Hompland T, Lund KV, Ellingsen C, Kristensen GB, Rofstad EK (2014) Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma. Radiother Oncol 113: 132−138 doi: 10.1016/j.radonc.2014.09.011
    [22]
    Jain RK (1988) Determinants of tumor blood flow: a review. Cancer research 48: 2641−2658
    [23]
    Jain RK, Martin JD, Stylianopoulos T (2014) The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng 16: 321−346
    [24]
    Jensen MM, Jørgensen JT, Binderup T, Kjær A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18 F-FDG-microPET or external caliper. BMC Med imaging 8: 16. https://doi.org/10.1186/1471-2342-8-16
    [25]
    Kamoun WS, Chae S-S, Lacorre DA, Tyrrell JA, Mitre M, Gillissen MA, Fukumura D, Jain RK, Munn LL (2010) Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks. Nat Methods 7(8): 655−660 doi: 10.1038/nmeth.1475
    [26]
    Kim E, Stamatelos S, Cebulla J, Bhujwalla ZM, Popel AS, Pathak AP (2012) Multiscale imaging and computational modeling of blood flow in the tumor vasculature. Ann Biomed Eng 40: 2425−2441 doi: 10.1007/s10439-012-0585-5
    [27]
    Konerding M, Fait E, Gaumann A (2001) 3D microvascular architecture of pre-cancerous lesions and invasive carcinomas of the colon. Br J Cancer 84(10): 1354−1362 doi: 10.1054/bjoc.2001.1809
    [28]
    Kurbel S, Kurbel B, Belovari T, Maric S, Steiner R, Bozic D (2001) Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Med Hypoth 57: 161−166 doi: 10.1054/mehy.2001.1288
    [29]
    Kuszyk BS, Corl FM, Franano FN, Bluemke DA, Hofmann LV, Fortman BJ, Fishman EK (2001) Tumor transport physiology: implications for imaging and imaging-guided therapy. Am J Roentgenol 177: 747−753 doi: 10.2214/ajr.177.4.1770747
    [30]
    Less JR, Posner MC, Boucher Y, Borochovitz D, Wolmark N, Jain RK (1992) Interstitial hypertension in human breast and colorectal tumors. Cancer Res 52: 6371−6374
    [31]
    Less JR, Skalak TC, Sevick EM, Jain RK (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51: 265−273
    [32]
    Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metast Rev 26: 281−290 doi: 10.1007/s10555-007-9066-y
    [33]
    Martin JD, Seano G, Jain RK (2019) Normalizing function of tumor vessels: progress, opportunities, and challenges. Annu Rev Physiol 81: 505−534 doi: 10.1146/annurev-physiol-020518-114700
    [34]
    McDougall SR, Anderson A, Chaplain M, Sherratt J (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64: 673−702 doi: 10.1006/bulm.2002.0293
    [35]
    Mohammadi M, Chen P (2015) Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: a computational model. Microvasc Res 101: 26−32 doi: 10.1016/j.mvr.2015.06.001
    [36]
    Munson JM, Shieh AC (2014) Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Manag Res 6: 317−328
    [37]
    Nagy JA, Dvorak AM, Dvorak HF (2012) Vascular hyperpermeability, angiogenesis, and stroma generation. Cold Spring Harb Perspec Med 2: a006544. https://doi.org/10.1101/cshperspect.a006544
    [38]
    Netti PA, Roberge S, Boucher Y, Baxter LT, Jain RK (1996) Effect of transvascular fluid exchange on pressure–flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity. Microvasc Res 52: 27−46 doi: 10.1006/mvre.1996.0041
    [39]
    Nugent LJ, Jain RK (1984) Extravascular diffusion in normal and neoplastic tissues. Cancer Res 44: 238−244
    [40]
    Pathak AP, Kim E, Zhang J, Jones MV (2011) Three-dimensional imaging of the mouse neurovasculature with magnetic resonance microscopy. PLoS One 6: e22643. https://doi.org/10.1371/journal.pone.0022643
    [41]
    Pozrikidis C (2010) Numerical simulation of blood and interstitial flow through a solid tumor. J Math Biol 60: 75−94 doi: 10.1007/s00285-009-0259-6
    [42]
    Pozrikidis C, Farrow D (2003) A model of fluid flow in solid tumors. Ann Biomed Eng 31: 181−194 doi: 10.1114/1.1540103
    [43]
    Pries A, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol-Heart Circ Physiol 281: H1015−H1025 doi: 10.1152/ajpheart.2001.281.3.H1015
    [44]
    Pries AR, Cornelissen AJ, Sloot AA, Hinkeldey M, Dreher MR, Höpfner M, Dewhirst MW, Secomb TW (2009) Structural adaptation and heterogeneity of normal and tumor microvascular networks. PLoS Comput Biol 5: e1000394. https://doi.org/10.1371/journal.pcbi.1000394
    [45]
    Sevick EM, Jain RK (1991) Measurement of capillary filtration coefficient in a solid tumor. Cancer Res 51: 1352−1355
    [46]
    Sitohy B, Nagy JA, Dvorak HF (2012) Anti-VEGF/VEGFR therapy for cancer: reassessing the target. Cancer Res 72: 1909−1914 doi: 10.1158/0008-5472.CAN-11-3406
    [47]
    Skliarenko JV, Lunt SJ, Gordon ML, Vitkin A, Milosevic M, Hill RP (2006) Effects of the vascular disrupting agent ZD6126 on interstitial fluid pressure and cell survival in tumors. Cancer Res 66: 2074−2080 doi: 10.1158/0008-5472.CAN-05-2046
    [48]
    Soltani M, Chen P (2011) Numerical modeling of fluid flow in solid tumors. PloS One 6: e20344. https://doi.org/10.1371/journal.pone.0020344
    [49]
    Soltani M, Chen P (2012) Effect of tumor shape and size on drug delivery to solid tumors. J Biol Eng 6: 4. https://doi.org/10.1186/1754-1611-6-4
    [50]
    Soltani M, Chen P (2013) Numerical modeling of interstitial fluid flow coupled with blood flow through a remodeled solid tumor microvascular network. PLoS One 8: e67025. https://doi.org/10.1371/journal.pone.0067025
    [51]
    Stamatelos SK, Kim E, Pathak AP, Popel AS (2014) A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions. Microvasc Res 91: 8−21 doi: 10.1016/j.mvr.2013.12.003
    [52]
    Stohrer M, Boucher Y, Stangassinger M, Jain RK (2000) Oncotic pressure in solid tumors is elevated. Cancer Res 60: 4251−4255
    [53]
    Stokes CL, Lauffenburger DA (1991) Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J Theor Biol 152: 377−403 doi: 10.1016/S0022-5193(05)80201-2
    [54]
    Swartz MA, Lund AW (2012) Lymphatic and interstitial flow in the tumour microenvironment: linking mechanobiology with immunity. Nat Rev Cancer 12: 210−219 doi: 10.1038/nrc3186
    [55]
    Sweeney PW, d’Esposito A, Walker-Samuel S, Shipley RJ (2019) Modelling the transport of fluid through heterogeneous, whole tumours in silico. PLoS Comput Biol 15: e1006751. https://doi.org/10.1371/journal.pcbi.1006751
    [56]
    Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64: 3731−3736 doi: 10.1158/0008-5472.CAN-04-0074
    [57]
    Vavourakis V, Wijeratne PA, Shipley R, Loizidou M, Stylianopoulos T, Hawkes DJ (2017) A validated multiscale in-silico model for mechano-sensitive tumour angiogenesis and growth. PLoS Comput Biol 13: e1005259. https://doi.org/10.1371/journal.pcbi.1005259
    [58]
    Vavra M, Ali MJ, Kang EW-Y, Navalitloha Y, Ebert A, Allen CV, Groothuis DR (2004) Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro-oncol 6: 104−112 doi: 10.1215/S1152851703000449
    [59]
    Welter M, Rieger H (2010) Physical determinants of vascular network remodeling during tumor growth. Eur Phys J E 33: 149−163 doi: 10.1140/epje/i2010-10611-6
    [60]
    Welter M, Rieger H (2013) Interstitial fluid flow and drug delivery in vascularized tumors: a computational model. PloS One 8: e70395. https://doi.org/10.1371/journal.pone.0070395
    [61]
    Wu J, Xu S, Long Q, Collins MW, König CS, Zhao G, Jiang Y, Padhani AR (2008) Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature. J Biomech 41: 996−1004 doi: 10.1016/j.jbiomech.2007.12.008
    [62]
    Zhan W, Gedroyc W, Xu XY (2014) Effect of heterogeneous microvasculature distribution on drug delivery to solid tumour. J Phys D: Appl Phys 47: 475401. https://doi.org/10.1088/0022-3727/47/47/475401
    [63]
    Zhan W, Gedroyc W, Xu XY (2017) The effect of tumour size on drug trasnport and uptake in 3-D tumour models reconstructed frlom magnetic resonance images. PLoS One 12: e0172276. https://doi.org/10.1371/journal.pone.0172276
    [64]
    Zhan W, Alamer M, Xu XY (2018) Computational modelling of drug delivery to solid tumour: understanding the interplay between chemotherapeutics and biological system for optimal delivery systems. Adv Drug Deliv Rev 132: 81−103 doi: 10.1016/j.addr.2018.07.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (976) PDF downloads(68) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return