Volume 6 Issue 6
Mar.  2021
Turn off MathJax
Article Contents
Wendi Huo, Xiaona Li, Bei Wang, Haoran Zhang, Jinchao Zhang, Xinjian Yang, Yi Jin. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy[J]. Biophysics Reports, 2020, 6(6): 256-265. doi: 10.1007/s41048-020-00123-w
Citation: Wendi Huo, Xiaona Li, Bei Wang, Haoran Zhang, Jinchao Zhang, Xinjian Yang, Yi Jin. Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy[J]. Biophysics Reports, 2020, 6(6): 256-265. doi: 10.1007/s41048-020-00123-w

Recent advances of DNAzyme-based nanotherapeutic platform in cancer gene therapy

doi: 10.1007/s41048-020-00123-w
Funds:  The work was supported by the National Natural Science Foundation of China (21603051), the Natural Science Foundation of Hebei Province (B2018201221, B2018201157), Hebei Youth top talent project, Key Projects of Education Department of Hebei Province (ZD2018036), and Undergraduate Innovation and Entrepreneurship Training Program of Hebei University (2020351).
More Information
  • Corresponding author: Xinjian Yang, Yi Jin
  • Received Date: 26 June 2020
  • Rev Recd Date: 08 October 2020
  • Publish Date: 10 March 2021
  • Deoxyribozyme (or denoted as DNAzyme), which is produced by in vitro screening technology, has gained extensive research interest in the field of biomedicine due to its high catalytic activity and structure identification. This review introduces the structural characteristics of RNA-cleaving DNAzyme and its application potential in cancer gene therapy, which plays a significant role in cancer-related gene inactivation by specifically cleaving target mRNA and inhibiting the expression of the corresponding protein. However, the low delivery efficiency and cellular uptake hindered the widespread usage of DNAzyme in gene therapy of cancers. Emerging nanotechnology holds great promise for DNAzyme to overcome these obstacles. This review mainly focuses on DNAzyme-based nanotherapeutic platforms in gene therapy of cancers, including oncogene antagonism therapy, treatment resistance gene therapy, immunogene therapy, and antiangiogenesis gene therapy. We also revealed the potential of DNAzymebased nanotherapeutic platforms as emerging cancer therapy approaches and their security issues.
  • loading
  • Amundson SA, Myers TG, Scudiero D, Kitada S, Reed JC, Fornace AJ Jr (2000) An informatics approach identifying markers of chemosensitivity in human cancer cell Lines. Cancer Res 60(21):6101-6110
    Cai H, Cho EA, Li Y, Sockler J, Parish CR, Chong BH, Edwards J, Dodds TJ, Ferguson PM, Wilmott JS, Scolyer RA, Halliday GM, Khachigian LM (2018) Melanoma protective antitumor immunity activated by catalytic DNA. Oncogene 37(37):5115-5126
    Cai H, Fernando SS, Leonel P, Wang B, Margaret P, Miles PD, Ghassan JM, Roland S, Christopher RP, Beng HC, Graham JL, Tak-Wah W, Colin NC, Douglas JF, Fergal JM, Ross SB, Halliday GM, Levon MK (2012) DNAzyme targeting c-jun suppresses skin cancer growth. Sci Transl Med 4(139):139ra82-139ra82
    Cao T, Wang Y, Tao Y, Zhang L, Zhou YL, Zhang XX, Heyman JA, Weitz DA (2020) DNAzyme-powered nucleic acid release from solid supports. Chem Commun (Camb)56(4):647-650
    Cho E-A, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, Yosufi B, Raftery MJ, Deng JZ, Morton SW, Hammond PT, Arkenau H-T, Damian DL, Francis DJ, Chesterman CN, Barnetson RSC, Halliday GM, Khachigian LM (2013) Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma:a phase 1 first-in-human trial (DISCOVER). The Lancet 381(9880):1835-1843
    Cully M (2017) Cancer:tumour vessel normalization takes centre stage. Nat Rev Drug Discov 16(2):87
    Dass CR, Choong PF, Khachigian LM (2008a) DNAzyme technology and cancer therapy:cleave and let die. Mol Cancer Ther 7(2):243-251
    Dass CR, Khachigian LM, Choong PF (2008b) c-Jun knockdown sensitizes osteosarcoma to doxorubicin. Mol Cancer Ther 7(7):1909-1912
    Davis ME, Chen ZG, Shin DM (2008) Nanoparticle therapeutics:an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771-782
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161-174
    Fan H, Zhao Z, Yan G, Zhang X, Yang C, Meng H, Chen Z, Liu H, Tan W (2015) A smart DNAzyme-MnO2 nanosystem for efficient gene silencing. Angew Chem Int Ed Engl 54(16):4801-4805
    Farrokhi F, Karami Z, Esmaeili-Mahani S, Heydari A (2018) Delivery of DNAzyme targeting c-Myc gene using b-cyclodextrin polymer nanocarrier for therapeutic application in human breast cancer cell line. J Drug Deliv Sci Tec 47:477-484
    Feng J, Xu Z, Liu F, Zhao Y, Yu W, Pan M, Wang F, Liu X (2018) Versatile catalytic deoxyribozyme vehicles for multimodal imaging-guided efficient gene regulation and photothermal therapy. ACS Nano 12(12):12888-12901
    Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, Francois JC (2012) Targeting insulin-like growth factor I with 10-23 DNAzymes:2'-O-methyl modifications in the catalytic core enhance mRNA cleavage. Biochemistry 51(11):2181-2191
    Fu S, Sun L (2015) DNAzyme-based therapeutics for cancer treatment. Future Med Chem 7(13):1701-1707
    Gao P, Zhou G, Zhang Q, Li H, Mu K, Yuan Y, Zhang J, Wang B (2006) Reversal MDR in breast carcinoma cells by transfection of ribozyme designed according the secondary structure of mdr1 mRNA. Chinese J Physiol 49(2):96-103
    Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871-882
    Haabeth OA, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, Omholt H, Munthe LA, Dembic Z, Corthay A, Bogen B (2014) How do CD4+T cells detect and eliminate tumor cells that either lack or express MHC class II molecules+Front Immunol 5(5):174. https://doi.org/10.3389/fimmu.2014.00174
    Hallett MA, Teng B, Hasegawa H, Schwab LP, Seagroves TN, Pourmotabbed T (2013) Anti-matrix metalloproteinase-9 DNAzyme decreases tumor growth in the MMTV-PyMT mouse model of breast cancer. Breast Cancer Res 15(1):R12. https://doi.org/10.1186/bcr3385
    He ZM, Zhang PH, Li X, Zhang JR, Zhu JJ (2016) A Targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery. Sci Rep 6:22737. https://doi.org/10.1038/srep22737
    Hollenstein M (2015) DNA catalysis:the chemical repertoire of DNAzymes. Molecules 20(11):20777-20804
    Jang D, Baek YM, Park H, Hwang YE, Kim DE (2018) Dual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells:TLR9 activation and EGFR downregulation. BMB Rep 51(1):27-32
    Jin Y, Li Z, Liu H, Chen S, Wang F, Wang L, Li N, Ge K, Yang X, Liang X-J, Zhang J (2017) Biodegradable, multifunctional DNAzyme nanoflowers for enhanced cancer therapy. NPG Asia Mater 9(3):e365
    Jin Y, Liang L, Sun X, Yu G, Chen S, Shi S, Liu H, Li Z, Ge K, Liu D, Yang X, Zhang J (2018) Deoxyribozyme-nanosponges for improved photothermal therapy by overcoming thermoresistance. NPG Asia Mater 10:373-384
    Jin Y, Wang H, Li X, Zhu H, Sun D, Sun X, Liu H, Zhang Z, Cao L, Gao C, Wang H, Liang XJ, Zhang J, Yang X (2020) Multifunctional DNA polymer-assisted upconversion therapeutic nanoplatform for enhanced photodynamic therapy. ACS Appl Mater Inter 12(24):26832-26841
    Khachigian LM (2019) Deoxyribozymes as catalytic nanotherapeutic agents. Cancer Res 79(5):879-888
    Khachigian LM, Cai H, Moloney FJ, Parish CR, Chong BH, Stocker R, Barnetson RS, Halliday GM (2012) Destroying c-jun messenger:new insights into biological mechanisms of DNAzyme function. Oncotarget 3(6):594-595
    Lan T, Furuya K, Lu Y (2010) A highly selective lead sensor based on a classic lead DNAzyme. Chem Commun (Camb) 46(22):3896-3898
    Li D, Mo F, Wu J, Huang Y, Zhou H, Ding S, Chen W (2018) A multifunctional DNA nano-scorpion for highly efficient targeted delivery of mRNA therapeutics. Sci Rep 8(1):10196. https://doi.org/10.1038/s41598-018-28542-3
    Liu J, Li Y (2007) A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ions in aqueous solution with high sensitivity and selectivity. J Am Chem Soc 129(32):9838-9839
    Lugano R, Ramachandran M, Dimberg A (2019) Tumor angiogenesis:causes, consequences, challenges and opportunities. Cell Mol Life Sci 77(21):1745-1770
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. J Control Release 65(1-2):271-284
    Meng L, Ma W, Lin S, Shi S, Li Y, Lin Y (2019) Tetrahedral DNA nanostructure-delivered DNAzyme for gene silencing to suppress cell growth. ACS Appl Mater Inter 11(7):6850-6857
    Peng S, Bie B, Sun Y, Liu M, Cong H, Zhou W, Xia Y, Tang H, Deng H, Zhou X (2018) Metal-organic frameworks for precise inclusion of single-stranded DNA and transfection in immune cells. Nat Commun 9(1):1293. https://doi.org/10.1038/s41467-018-03650-w
    Peng Y, Zhang P, Huang X, Yan Q, Wu M, Xie R, Wu Y, Zhang M, Nan Q, Zhao J, Li A, Xiong J, Ren Y, Bai Y, Chen Y, Liu S (2016) Direct regulation of foxk1 by c-jun promotes proliferation, invasion and metastasis in gastric cancer cells. Cell Death Dis 7(11):e2480. https://doi.org/10.1038/cddis.2016.225
    Ramos P, Bentires-Alj M (2015) Mechanism-based cancer therapy:resistance to therapy, therapy for resistance. Oncogene 34(28):3617-3626
    Raphael I, Joern RR, Forsthuber TG (2020) Memory CD4+T cells in immunity and autoimmune diseases. Cells 9(3):531. https://doi.org/10.3390/cells9030531
    Ren T, Deng Z, Liu H, Li X, Li J, Yuan J, He Y, Liu Q, Yang Y, Zhong S (2019) Co-delivery of DNAzyme and a chemotherapy drug using a DNA tetrahedron for enhanced anticancer therapy through synergistic effects. New J Chem 43(15):14020-14027
    Roma-Rodrigues C, Rivas-Garcia L, Baptista PV, Fernandes AR (2020) Gene therapy in cancer treatment:why go nano? Pharmaceutics 12(3):233. https://doi.org/10.3390/pharmaceutics12030233
    Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94(9):4262-4266
    Shen L, Zhou Q, Wang Y, Liao W, Chen Y, Xu Z, Yang L, Sun LQ (2013) Antiangiogenic and antitumoral effects mediated by a vascular endothelial growth factor receptor 1(VEGFR-1)- targeted DNAzyme. Mol Med 19(1):377-386
    Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33(19):6151-6163
    Silverman SK (2016) Catalytic DNA:scope, applications, and biochemistry of deoxyribozymes. Trends Biochem Sci 41(7):595-609
    Sun SP, Liu CP, Huang IP, Chu CH, Chung MF, Cheng SH, Lin SY, Lo LW (2017) A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis. Nano Futures 1(3):035005. https://doi.org/10.1088/2399-1984/aa996f
    Sun X, Jin Y, Wang H, Feng N, Li Z, Liu D, Ge K, Liu H, Zhang J, Yang X (2018) A NIR-light activated nanoplatform for sensitizing triple negative breast cancer against therapeutic resistance to enhance the treatment effect. J Mater Chem B 6(43):6950-6956
    Tan ML, Dunstan DE, Friedhuber AM, Choong PF, Dass CR (2010) A nanoparticulate system that enhances the efficacy of the tumoricide Dz13 when administered proximal to the lesion site. J Control Release 144(2):196-202
    Wang H, Chen Y, Wang H, Liu X, Zhou X, Wang F (2019a) DNAzyme-loaded metal-organic frameworks (MOFs) for selfsufficient gene therapy. Angew Chem Int Ed Engl 58(22):7380-7384
    Wang J, Wang H, Wang H, He S, Li R, Deng Z, Liu X, Wang F (2019b) Nonviolent self-catabolic DNAzyme nanosponges for smart anticancer drug delivery. ACS Nano 13(5):5852-5863
    Wang X, Dai J, Wang X, Hu Q, Huang K, Zhao Z, Lou X, Xia F (2019c) MnO2-DNAzyme-photosensitizer nanocomposite with AIE characteristic for cell imaging and photodynamic-gene therapy. Talanta 202(1):591-599
    Wang X, Zhang L, Ding N, Yang X, Zhang J, He J, Li Z, Sun LQ (2015) Identification and characterization of DNAzymes targeting DNA methyltransferase I for suppressing bladder cancer proliferation. Biochem Biophys Res Commun 461(2):329-333
    Wiktorska M, Papiewska-Pająk L, Okruszek A, Sacewicz Hofman L, Niewiarowska J (2010) DNAzyme as an efficient tool to modulate invasiveness of human carcinoma cells. Acta Biochimica Polonica 57(3):269-275
    Wu Y, Yu L, Mcmahon R, Rossi J, Forman S, Snyder D (1999) Inhibition of bcr-abl oncogene expression by novel deoxyribozymes (DNAzymes). Hum Gene Ther 10(17):2847-2857
    Xiao Y, Shi K, Qu Y, Chu B, Qian Z (2019) Engineering nanoparticles for targeted delivery of nucleic acid therapeutics in tumor. Mol Ther Methods Clin Dev 12:1-18
    Xing Z, Gao S, Duan Y, Han H, Li L, Yang Y, Li Q (2015) Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer. Int J Nanomed 10(1):5715-5727
    Xu Z, Yang L, Sun L, Cao Y (2012) Use of DNAzymes for cancer research and therapy. Chinese Sci Bull 57(26):3404-3408
    Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, Xu S, Xiao L, Lu J, Luo X, Tang M, Ann MB, Dong Z, Sun L, Cao Y (2015) EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget 6(8):5804-5817
    Yu X, Yang L, Cairns MJ, Dass C, Saravolac E, Li X, Sun L (2014) Chemosensitization of solid tumors by inhibition of Bcl-xL expression using DNAzyme. Oncotarget 5(19):9039-9048
    Zhang L, Zhao W, Liang C, Yi X, Pei Y, Lin Y, He J, Li W (2016) VEGFR-1 targeted DNAzyme via transcatheter arterial delivery influences tumor vasculature assessed through dynamic contrast-enhanced magnetic resonance imaging. Oncol Rep 36(3):1339-1344
    Zhou W, Ding J, Liu J (2017) Theranostic DNAzymes. Theranostics 7(4):1010-1025
    Zhou W, Saran R, Chen Q, Ding J, Liu J (2016) A new Na+dependent RNA-cleaving DNAzyme with over 1000-fold rate acceleration by ethanol. Chembiochem 17(2):159-163
    Zokaei E, Badoei-Dalfrad A, Ansari M, Karami Z, Eslaminejad T, Nematollahi-Mahani SN (2019) Therapeutic potential of DNAzyme loaded on chitosan/cyclodextrin nanoparticle to recovery of chemosensitivity in the MCF-7 cell line. Appl Biochem Biotechnol 187(3):708-723
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1198) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return