Volume 10 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Shenglan Zhang, Zhiran Fan, Jianfeng Liu. Generation and characterization of nanobodies targeting GPCR. Biophysics Reports, 2024, 10(1): 22-30. doi: 10.52601/bpr.2023.230026
Citation: Shenglan Zhang, Zhiran Fan, Jianfeng Liu. Generation and characterization of nanobodies targeting GPCR. Biophysics Reports, 2024, 10(1): 22-30. doi: 10.52601/bpr.2023.230026

Generation and characterization of nanobodies targeting GPCR

doi: 10.52601/bpr.2023.230026
More Information
  • Corresponding author: jfliu@mail.hust.edu.cn (J. Liu)
  • Received Date: 25 October 2023
  • Accepted Date: 15 December 2023
  • Available Online: 26 February 2024
  • Publish Date: 29 February 2024
  • G protein-coupled receptors (GPCRs) are a large family of cell membrane proteins that are important targets for drug discovery. Nanobodies, also known as VHH (variable domains of heavy chain-only antibodies, HcAbs) antibodies, are small antibody fragments derived from camelids that have gained significant attention as potential therapeutics for targeting GPCRs due to their advantages over conventional antibodies. However, there are challenges in developing nanobodies targeting GPCRs, among which epitope accessibility is the most significant because the cell membrane partially shields the GPCR surface. We developed a universal protocol for making nanobodies targeting GPCRs using the cell membrane extract of GPCR-overexpressing HEK293 cells as the llama/alpaca immunization antigen. We constructed an immune VHH library and identified nanobodies by phage display bio-panning. The monoclonal nanobodies were recombinantly expressed in Escherichia coli (E. coli) and purified to characterize their binding potency.

  • Shenglan Zhang, Zhiran Fan and Jianfeng Liu declare that they have no conflict of insterest.
    All institutional and national guidelines for the care and use of laboratory animals were followed.
    Shenglan Zhang and Zhiran Fan contributed equally to this work.

  • loading
  • Arbabi Ghahroudi M, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3): 521−526
    Ayoub MA, Crepieux P, Koglin M, Parmentier M, Pin JP, Poupon A, Reiter E, Smit M, Steyaert J, Watier H, Wilkinson T (2017) Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. mAbs 9(5): 735−741 doi: 10.1080/19420862.2017.1325052
    Behar G, Chames P, Teulon I, Cornillon A, Alshoukr F, Roquet F, Pugniere M, Teillaud JL, Gruaz-Guyon A, Pelegrin A, Baty D (2009) Llama single-domain antibodies directed against nonconventional epitopes of tumor-associated carcinoembryonic antigen absent from nonspecific cross-reacting antigen. FEBS J 276(14): 3881−3893
    Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL (2018) Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell 172(1-2): 55−67.e15 doi: 10.1016/j.cell.2017.12.011
    Chen Y, Fleetwood O, Pérez-Conesa S, Delemotte L (2021) Allosteric effect of nanobody binding on ligand-specific active states of the β2 adrenergic receptor. J Chem Inf Model 61(12): 6024−6037 doi: 10.1021/acs.jcim.1c00826
    De Groof TWM, Bobkov V, Heukers R, Smit MJ (2019) Nanobodies: new avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 484: 15−24 doi: 10.1016/j.mce.2019.01.021
    Heukers R, De Groof TWM, Smit MJ (2019) Nanobodies detecting and modulating GPCRs outside in and inside out. Curr Opin Cell Biol 57: 115−122 doi: 10.1016/j.ceb.2019.01.003
    Hoey RJ, Eom H, Horn JR (2019) Structure and development of single domain antibodies as modules for therapeutics and diagnostics. Exp Biol Med (Maywood) 244(17): 1568−1576 doi: 10.1177/1535370219881129
    Hutchings CJ (2020) Mini-review: antibody therapeutics targeting G protein-coupled receptors and ion channels. Antib Ther 3(4): 257−264
    Jin BK, Odongo S, Radwanska M, Magez S (2023) Nanobodies: a review of generation, diagnostics and therapeutics. Int J Mol Sci 24(6): 5994. https://doi.org/10.3390/ijms24065994
    Jo M, Jung ST (2016) Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 48: e207. https://doi.org/10.1038/emm.2015.105
    Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14): 3059−3066 doi: 10.1093/nar/gkf436
    Liu W, Song H, Chen Q, Yu J, Xian M, Nian R, Feng D (2018) Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol 96: 37−47 doi: 10.1016/j.molimm.2018.02.012
    Ma Y, Ding Y, Song X, Ma X, Li X, Zhang N, Song Y, Sun Y, Shen Y, Zhong W, Hu LA, Ma Y, Zhang M-Y (2020) Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. Science Advances 6(3): eaax7379. https://doi.org/10.1126/sciadv.aax7379
    McMahon C, Staus DP, Wingler LM, Wang J, Skiba MA, Elgeti M, Hubbell WL, Rockman HA, Kruse AC, Lefkowitz RJ (2020) Synthetic nanobodies as angiotensin receptor blockers. Proc Natl Acad Sci USA 117(33): 20284−20291 doi: 10.1073/pnas.2009029117
    Morrison C (2019) Nanobody approval gives domain antibodies a boost. Nat Rev Drug Discov 18(7): 485−487 doi: 10.1038/d41573-019-00104-w
    Muyldermans S (2021) Applications of nanobodies. Annu Rev Anim Biosci 9: 401−421 doi: 10.1146/annurev-animal-021419-083831
    Oh MY, Joo HY, Hur BU, Jeong YH, Cha SH (2007) Enhancing phage display of antibody fragments using gIII-amber suppression. Gene 386(1-2): 81−89 doi: 10.1016/j.gene.2006.08.009
    Raynaud P, Gauthier C, Jugnarain V, Jean-Alphonse F, Reiter E, Bruneau G, Crépieux P (2022) Intracellular VHHs to monitor and modulate GPCR signaling. Front Endocrinol (Lausanne) 13: 1048601. https://doi.org/10.3389/fendo.2022.1048601
    Robertson MJ, Papasergi-Scott MM, He F, Seven AB, Meyerowitz JG, Panova O, Peroto MC, Che T, Skiniotis G (2022) Structure determination of inactive-state GPCRs with a universal nanobody. Nat Struct Mol Biol 29(12): 1188−1195 doi: 10.1038/s41594-022-00859-8
    Sheridan C (2017) Ablynx's nanobody fragments go places antibodies cannot. Nat Biotechnol 35(12): 1115−1117 doi: 10.1038/nbt1217-1115
    Thal DM, Glukhova A, Sexton PM, Christopoulos A (2018) Structural insights into G-protein-coupled receptor allostery. Nature 559(7712): 45−53 doi: 10.1038/s41586-018-0259-z
    Uchanski T, Pardon E, Steyaert J (2020) Nanobodies to study protein conformational states. Curr Opin Struct Biol 60: 117−123 doi: 10.1016/j.sbi.2020.01.003
    Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112: 531−552
    Zhang M, Gui M, Wang ZF, Gorgulla C, Yu JJ, Wu H, Sun ZJ, Klenk C, Merklinger L, Morstein L, Hagn F, Plückthun A, Brown A, Nasr ML, Wagner G (2021) Cryo-EM structure of an activated GPCR-G protein complex in lipid nanodiscs. Nat Struct Mol Biol 28(3): 258−267 doi: 10.1038/s41594-020-00554-6
    Zimmermann I, Egloff P, Hutter CA, Arnold FM, Stohler P, Bocquet N, Hug MN, Huber S, Siegrist M, Hetemann L, Gera J, Gmur S, Spies P, Gygax D, Geertsma ER, Dawson RJ, Seeger MA (2018) Synthetic single domain antibodies for the conformational trapping of membrane proteins. Elife 7: e34317. https://doi.org/10.7554/eLife.34317
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (494) PDF downloads(61) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint