Volume 10 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
Shen Wang, Cong Ma. A practical guide for fast implementation of SNARE-mediated liposome fusion. Biophysics Reports, 2024, 10(1): 31-40. doi: 10.52601/bpr.2023.230017
Citation: Shen Wang, Cong Ma. A practical guide for fast implementation of SNARE-mediated liposome fusion. Biophysics Reports, 2024, 10(1): 31-40. doi: 10.52601/bpr.2023.230017

A practical guide for fast implementation of SNARE-mediated liposome fusion

doi: 10.52601/bpr.2023.230017
More Information
  • Corresponding author: cong.ma@hust.edu.cn (C. Ma)
  • Received Date: 08 October 2023
  • Accepted Date: 28 December 2023
  • Available Online: 26 February 2024
  • Publish Date: 29 February 2024
  • Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAER) family proteins are the engines of most intra-cellular and exocytotic membrane fusion pathways (Jahn and Scheller 2006). Over the past two decades, in-vitro liposome fusion has been proven to be a powerful tool to reconstruct physiological SNARE-mediated membrane fusion processes (Liu et al. 2017). The reconstitution of the membrane fusion process not only provides direct evidence of the capability of the cognate SNARE complex in driving membrane fusion but also allows researchers to study the functional mechanisms of regulatory proteins in related pathways (Wickner and Rizo 2017). Heretofore, a variety of delicate methods for in-vitro SNARE-mediated liposome fusion have been established (Bao et al. 2018; Diao et al. 2012; Duzgunes 2003; Gong et al. 2015; Heo et al. 2021; Kiessling et al. 2015; Kreye et al. 2008; Kyoung et al. 2013; Liu et al. 2017; Scott et al. 2003). Although technological advances have made reconstitution more physiologically relevant, increasingly elaborate experimental procedures, instruments, and data processing algorithms nevertheless hinder the non-experts from setting up basic SNARE-mediated liposome fusion assays. Here, we describe a low-cost, timesaving, and easy-to-handle protocol to set up a foundational in-vitro SNARE-mediated liposome fusion assay based on our previous publications (Liu et al. 2023; Wang and Ma 2022). The protocol can be readily adapted to assess various types of SNARE-mediated membrane fusion and the actions of fusion regulators by using appropriate alternative additives (e.g., proteins, macromolecules, chemicals, etc.). The total time required for one round of the assay is typically two days and could be extremely compressed into one day.

  • Shen Wang and Cong Ma declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Bao H, Das D, Courtney NA, Jiang Y, Briguglio JS, Lou X, Roston D, Cui Q, Chanda B, Chapman ER (2018) Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties. Nature 554(7691): 260−263 doi: 10.1038/nature25481
    Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2): 153−166 doi: 10.1016/S0092-8674(03)01079-1
    Camacho M, Quade B, Trimbuch T, Xu J, Sari L, Rizo J, Rosenmund C (2021) Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C(1)C(2)B region. Elife 10: e 72030. doi: 10.7554/eLife.72030
    Chen YA, Scheller RH (2001) SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2(2): 98−106 doi: 10.1038/35052017
    Diao J, Ishitsuka Y, Lee H, Joo C, Su Z, Syed S, Shin YK, Yoon TY, Ha T (2012) A single vesicle-vesicle fusion assay for in vitro studies of SNAREs and accessory proteins. Nat Protoc 7(5): 921−934 doi: 10.1038/nprot.2012.020
    Diao J, Li L, Lai Y, Zhong Q (2017) In vitro reconstitution of autophagosome-lysosome fusion. Methods Enzymol 587: 365−376
    Duzgunes N (2003) Fluorescence assays for liposome fusion. Methods Enzymol 372: 260−274
    Gong B, Choi BK, Kim JY, Shetty D, Ko YH, Selvapalam N, Lee NK, Kim K (2015) High affinity host-guest fret pair for single-vesicle content-mixing assay: observation of flickering fusion events. J Am Chem Soc 137(28): 8908−8911 doi: 10.1021/jacs.5b05385
    Heo P, Coleman J, Fleury JB, Rothman JE, Pincet F (2021) Nascent fusion pore opening monitored at single-SNAREpin resolution. Proc Natl Acad Sci USA 118(5): e2024922118. https://doi.org/10.1073/pnas.2024922118
    Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490(7419): 201−207 doi: 10.1038/nature11320
    Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112(4): 519−533 doi: 10.1016/S0092-8674(03)00112-0
    Jahn R, Scheller RH (2006) SNAREs-engines for membrane fusion. Nat Rev Mol Cell Biol 7(9): 631−643 doi: 10.1038/nrm2002
    Kiessling V, Liang B, Tamm LK (2015) Reconstituting SNARE-mediated membrane fusion at the single liposome level. Methods Cell Biol 128: 339−363
    Kloepper TH, Kienle CN, Fasshauer D (2007) An elaborate classification of SNARE proteins sheds light on the conservation of the eukaryotic endomembrane system. Mol Biol Cell 18(9): 3463−3471 doi: 10.1091/mbc.e07-03-0193
    Kloepper TH, Kienle CN, Fasshauer D (2008) SNAREing the basis of multicellularity: consequences of protein family expansion during evolution. Mol Biol Evol 25(9): 2055−2068 doi: 10.1093/molbev/msn151
    Kreye S, Malsam J, Söllner TH (2008) In vitro assays to measure SNARE-mediated vesicle fusion. Methods Mol Biol 440: 37−50
    Kyoung M, Zhang Y, Diao J, Chu S, Brunger AT (2013) Studying calcium-triggered vesicle fusion in a single vesicle-vesicle content and lipid-mixing system. Nat Protoc 8(1): 1−16 doi: 10.1038/nprot.2012.134
    Lai Y, Choi UB, Leitz J, Rhee HJ, Lee C, Altas B, Zhao M, Pfuetzner RA, Wang AL, Brose N, Rhee J, Brunger AT (2017) Molecular mechanisms of synaptic vesicle priming by Munc13 and Munc18. Neuron 95(3): 591-607 e510
    Liu C, Liu D, Wang S, Gan L, Yang X, Ma C (2023) Identification of the SNARE complex that mediates the fusion of multivesicular bodies with the plasma membrane in exosome secretion. J Extracell Vesicles 12(9): e12356. https://doi.org/10.1002/jev2.12356
    Liu X, Seven AB, Xu J, Esser V, Su L, Ma C, Rizo J (2017) Simultaneous lipid and content mixing assays for in vitro reconstitution studies of synaptic vesicle fusion. Nat Protoc 12(9): 2014−2028 doi: 10.1038/nprot.2017.068
    Nickel W, Weber T, McNew JA, Parlati F, Sollner TH, Rothman JE (1999) Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc Natl Acad Sci USA 96(22): 12571−12576 doi: 10.1073/pnas.96.22.12571
    Ollivon M, Lesieur S, Grabielle-Madelmont C, Paternostre M (2000) Vesicle reconstitution from lipid-detergent mixed micelles. Biochim Biophys Acta 1508(1-2): 34−50 doi: 10.1016/S0304-4157(00)00006-X
    Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T, Xu J, Li W, Nicastro D, Rosenmund C, Rizo J (2019) Membrane bridging by Munc13-1 is crucial for neurotransmitter release. Elife 8: e42806. https://doi.org/10.7554/eLife.42806
    Scott BL, Van Komen JS, Liu S, Weber T, Melia TJ, McNew JA (2003) Liposome fusion assay to monitor intracellular membrane fusion machines. Methods Enzymol 372: 274−300
    Song H, Torng TL, Orr AS, Brunger AT, Wickner WT (2021) Sec17/Sec18 can support membrane fusion without help from completion of SNARE zippering. Elife 10: e67578. https://doi.org/10.7554/eLife.67578
    Song H, Wickner WT (2021) Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/alphaSNAP without HOPS. Elife 10: e73240. https://doi.org/10.7554/eLife.73240
    Stepien KP, Prinslow EA, Rizo J (2019) Munc18-1 is crucial to overcome the inhibition of synaptic vesicle fusion by alphaSNAP. Nat Commun 10(1): 4326. https://doi.org/10.1038/s41467-019-12188-4
    Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913): 474−477 doi: 10.1126/science.1161748
    Wang S, Li Y, Ma C (2016) Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion. Elife 5: e14211. https://doi.org/10.7554/eLife.14211
    Wang S, Ma C (2022) Stability profile of the neuronal SNARE complex reflects its potency to drive fast membrane fusion. Biophys J 121(16): 3081−3102 doi: 10.1016/j.bpj.2022.07.013
    Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6): 759−772 doi: 10.1016/S0092-8674(00)81404-X
    Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26: 115−136 doi: 10.1146/annurev-cellbio-100109-104131
    Wickner W, Rizo J (2017) A cascade of multiple proteins and lipids catalyzes membrane fusion. Mol Biol Cell 28(6): 707−711 doi: 10.1091/mbc.e16-07-0517
    Zhang R, Yang Y, He C, Zhang X, Torraca V, Wang S, Liu N, Yang J, Liu S, Yuan J, Gou D, Li S, Dong X, Xie Y, He J, Bai H, Hu M, Liao Z, Huang Y, Lyu H, Xiao S, Guo D, Ali DW, Michalak M, Ma C, Chen XZ, Tang J, Zhou C (2023) RUNDC1 inhibits autolysosome formation and survival of zebrafish via clasping ATG14-STX17-SNAP29 complex. Cell Death Differ 30(10): 2231−2248 doi: 10.1038/s41418-023-01215-z
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views (259) PDF downloads(14) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint