Citation: | Peng Chen, Zhenlei Li, Zhaolin Hong, Haoran Zheng, Rong Zeng. Tumor type classification and candidate cancer-specific biomarkers discovery via semi-supervised learning[J]. Biophysics Reports. doi: 10.52601/bpr.2023.230005 |
Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509−519 doi: 10.1093/bioinformatics/17.6.509
|
Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R (2007) NCBI GEO: mining tens of millions of expression profiles — Database and tools update. Nucleic Acids Res 35: D760−D765 doi: 10.1093/nar/gkl887
|
Carvalho BS, Irizarry RA (2010) A framework for oligonucleotide microarray preprocessing. Bioinformatics 26: 2363−2367 doi: 10.1093/bioinformatics/btq431
|
Chapelle O, Scholkopf B, Zien A (2009) Semi-supervised learning (Chapelle O et al. Eds, 2006) [Book reviews]. IEEE T Neur Net 20: 542−542
|
Chen C-R, McLachlan SM, Hubbard PA, McNally R, Murali R, Rapoport B (2018) Structure of a thyrotropin receptor monoclonal antibody variable region provides insight into potential mechanisms for its inverse agonist activity. Thyroid 28: 933−940 doi: 10.1089/thy.2018.0176
|
Cheriyath V, Leaman DW, Borden EC (2011) Emerging roles of FAM14 family members (G1P3/ISG 6–16 and ISG12/IFI27) in innate immunity and cancer. J Interf Cytok Res 31: 173−181 doi: 10.1089/jir.2010.0105
|
Cubuk ED, Zoph B, Mane D, Vasudevan V, Le QV (2018) Autoaugment: learning augmentation policies from data. arXiv: 180509501. https://doi.org/10.48550/arXiv.1805.09501
|
da Silveira W, Palma P, Sicchieri R, Villacis RA, Mandarano L, Oliveira T, Antonio H, Andrade J, Muglia V, Rogatto S (2017) Transcription factor networks derived from breast cancer stem cells control the immune response in the basal subtype. Sci Rep 7(1): 2851. https://doi.org/10.1038/s41598-017-02761-6
|
Dai W, Chang Q, Peng W, Zhong J, Li Y (2020) Network embedding the protein–protein interaction network for human essential genes identification. Genes 11: 153. https://doi.org/10.3390/genes11020153
|
Danaee P, Ghaeini R, Hendrix DA (2017) A deep learning approach for cancer detection and relevant gene identification. Pacific symposium on biocomputing 2017: 219−229
|
Díaz-Uriarte R, de Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7: 3. https://doi.org/10.1186/1471-2105-7-3
|
Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) Affy — Analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307−315 doi: 10.1093/bioinformatics/btg405
|
Goldman M, Craft B, Brooks A, Zhu J, Haussler D (2018) The UCSC Xena Platform for cancer genomics data visualization and interpretation. bioRxiv: 326470. https://doi.org/10.1101/326470
|
Guo F-B, Dong C, Hua H-L, Liu S, Luo H, Zhang H-W, Jin Y-T, Zhang K-Y (2017) Accurate prediction of human essential genes using only nucleotide composition and association information. Bioinformatics 33: 1758−1764
|
Jafari P, Azuaje F (2006) An assessment of recently published gene expression data analyses: reporting experimental design and statistical factors. BMC Med Inform Decis Mak 6: 27. https://doi.org/10.1186/1472-6947-6-27
|
Khoshghalbvash F, Gao JX (2019) Integrative feature ranking by applying deep learning on multi source genomic data. Proceedings of the 10th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics. pp. 207−216. https://doi.org/10.1145/3307339.3342139
|
Kuang S, Wei Y, Wang L (2021) Expression-based prediction of human essential genes and candidate lncRNAs in cancer cells. Bioinformatics 37: 396−403 doi: 10.1093/bioinformatics/btaa717
|
Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, Antipova A, Lee C, McKernan K, Francisco M (2010) Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med 2: 20ra14. https://doi.org/10.1126/scitranslmed.3000702
|
Liu JJ, Cutler G, Li W, Pan Z, Peng S, Hoey T, Chen L, Ling XB (2005) Multiclass cancer classification and biomarker discovery using GA-based algorithms. Bioinformatics 21: 2691−2697 doi: 10.1093/bioinformatics/bti419
|
Loshchilov I, Hutter F (2016) Sgdr: stochastic gradient descent with warm restarts. arXiv: 160803983. https://doi.org/10.48550/arXiv.1608.03983
|
Lyu B, Haque A (2018) Deep learning based tumor type classification using gene expression data. Proceedings of the 2018 ACM international conference on bioinformatics, computational biology, and health informatics. pp. 89−96
|
Mooney SM, Talebian V, Jolly MK, Jia D, Gromala M, Levine H, McConkey BJ (2017) The GRHL2/ZEB feedback loop — A key axis in the regulation of EMT in breast cancer. J Cell Biochem 118: 2559−2570 doi: 10.1002/jcb.25974
|
Novaković S (2004) Tumor markers in clinical oncology. Radiol Oncol 38(2): 73−83 + 155
|
The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, Shmulevich I, Sander C, Stuart JM (2013) The cancer genome atlas pan-cancer analysis project. Nat Genet 45: 1113−1120 doi: 10.1038/ng.2764
|
Tseng I, Yeh MM, Yang C-Y, Jeng Y-M (2015) NKX6-1 is a novel immunohistochemical marker for pancreatic and duodenal neuroendocrine tumors. Am J Surg Pathol 39: 850−857 doi: 10.1097/PAS.0000000000000435
|
Wang H (2015) The distribution and expression of BAMBI in breast cancer cell lines. Open Access Library Journal 2: 1−7 doi: 10.4236/oalib.1102147
|
Way GP, Greene CS (2018) Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pacific Symposium on Biocomputing 2018: Proceedings of the Pacific Symposium. World Scientific, pp. 80−91
|
Xie Q, Dai Z, Hovy E, Luong M-T, Le QV (2019) Unsupervised data augmentation for consistency training. arXiv: 190412848. https://doi.org/10.48550/arXiv.1904.12848
|
Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, Xia J (2018) Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun 9(1): 678. https://doi.org/10.1038/s41467-018-03024-2
|
Zagoruyko S, Komodakis N (2016) Wide residual networks. arXiv: 160507146. https://doi.org/10.48550/arXiv.1605.07146
|
Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2017) mixup: beyond empirical risk minimization. arXiv: 171009412. https://doi.org/10.48550/arXiv.1710.09412
|
Zhu H, Peng Y-G, Ma S-G, Liu H (2015) TPO gene mutations associated with thyroid carcinoma: case report and literature review. Cancer Biomark 15: 909−913 doi: 10.3233/CBM-150522
|
Zhuo H, Zhao Y, Cheng X, Xu M, Wang L, Lin L, Lyu Z, Hong X, Cai J (2019) Tumor endothelial cell-derived cadherin-2 promotes angiogenesis and has prognostic significance for lung adenocarcinoma. Mol cancer 18(1): 34. https://doi.org/10.1186/s12943-019-0987-1
|