Volume 9 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Xuemei Zeng, Yihang Ruan, Lun Wang, Jinpeng Deng, Shuangqian Yan. Synergistic glycolysis disturbance for cancer therapy by a MOF-based nanospoiler[J]. Biophysics Reports, 2023, 9(3): 134-145. doi: 10.52601/bpr.2023.230003
Citation: Xuemei Zeng, Yihang Ruan, Lun Wang, Jinpeng Deng, Shuangqian Yan. Synergistic glycolysis disturbance for cancer therapy by a MOF-based nanospoiler[J]. Biophysics Reports, 2023, 9(3): 134-145. doi: 10.52601/bpr.2023.230003

Synergistic glycolysis disturbance for cancer therapy by a MOF-based nanospoiler

doi: 10.52601/bpr.2023.230003
More Information
  • Corresponding author: xmzeng@fjnu.edu.cn (X. Zeng); ifeshqyan@fjnu.edu.cn (S. Yan)
  • Received Date: 28 January 2023
  • Accepted Date: 16 March 2023
  • Available Online: 03 June 2023
  • Publish Date: 01 June 2023
  • Increased glycolysis for promoting adenosine triphosphate (ATP) generation is one of the hallmarks of cancer. Although reducing glucose intake or depriving cellular glucose can delay the growth of tumors to some extent, their therapeutic efficacy is a highly needed improvement for clinical translation. Herein, we found that mannose synergistic with glucose oxidase (GOx) can induce cell death by ATP inhibition, autophagy activation, and apoptosis protein upgradation. By using biodegradable zeolitic imidazolate frameworks (ZIF-8) as a nanocarrier (denoted as ZIF-8/M&G), the mannose and GOx can accumulate at the tumor site while having no obvious long-term toxicity. At the tumor site, GOx inhibits glycolysis by converting glucose and oxygen to H2O2 and gluconic acid, realizing oxidation therapy and expediting the degradation of the pH-responsive ZIF-8 nanoparticles, respectively. Simultaneously, mannose disturbs sugar metabolism and reduces oxygen consumption, which in turn promotes the GOx oxidation process. The concerted glycolysis inhibition through interactions between mannose and GOx endows ZIF-8/M&G nanospolier with excellent therapeutic efficacy both in vitro and in vivo. Synergistic glycolysis disturbance by the designed nanospoiler in this work proposes a versatile approach for metabolism disturbance to tumor treatment.

  • Xuemei Zeng, Yihang Ruan, Lun Wang, Jinpeng Deng and Shuangqian Yan declare that they have no Conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Akram M (2013) Mini-review on glycolysis and cancer. J Cancer Educ 28(3): 454−457 doi: 10.1007/s13187-013-0486-9
    Brandhorst S, Choi IY, Wei M, Cheng CW, Sedrakyan S, Navarrete G, Dubeau L, Yap LP, Park R, Vinciguerra M (2015) A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab 22(1): 86−99 doi: 10.1016/j.cmet.2015.05.012
    Chen T-T, Yi J-T, Zhao Y-Y, Chu X (2018) Biomineralized metal-organic framework nanoparticles enable intracellular delivery and endo-lysosomal release of native active proteins. J Am Chem Soc 140(31): 9912−9920 doi: 10.1021/jacs.8b04457
    Cheng H, Jiang X-Y, Zheng R-R, Zuo S-J, Zhao L-P, Fan G-L, Xie B-R, Yu X-Y, Li S-Y, Zhang X-Z (2019) A biomimetic cascade nanoreactor for tumor targeted starvation therapy-amplified chemotherapy. Biomaterials 195: 75−85 doi: 10.1016/j.biomaterials.2019.01.003
    DeBerardinis RJ (2008) Is cancer a disease of abnormal cellular metabolism? New angles on an old idea. Genet Med 10(11): 767−777 doi: 10.1097/GIM.0b013e31818b0d9b
    DeBerardinis RJ, Chandel NS (2016) Fundamentals of cancer metabolism. Sci Adv 2(5): e1600200. https://doi.org/10.1126/sciadv.1600200
    DeRossi C, Bode L, Eklund EA, Zhang F, Davis JA, Westphal V, Wang L, Borowsky AD, Freeze HH (2006) Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality. J Biol Chem 281(9): 5916−5927 doi: 10.1074/jbc.M511982200
    Di Biase S, Lee C, Brandhorst S, Manes B, Buono R, Cheng C-W, Cacciottolo M, Martin-Montalvo A, de Cabo R, Wei M (2016) Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30(1): 136−146 doi: 10.1016/j.ccell.2016.06.005
    Fan W, Lu N, Huang P, Liu Y, Yang Z, Wang S, Yu G, Liu Y, Hu J, He Q (2017) Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy. Angew Chem Int Ed Engl 56(5): 1229−1233 doi: 10.1002/anie.201610682
    Fan Z, Wang Y, Xiang S, Zuo W, Huang D, Jiang B, Sun H, Yin W, Xie L, Hou Z (2020) Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate–mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects. J Mater Chem B 8(9): 1922−1934 doi: 10.1039/D0TB00049C
    Fu L-H, Qi C, Lin J, Huang P (2018) Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem Soc Rev 47(17): 6454−6472 doi: 10.1039/C7CS00891K
    Fu LH, Qi C, Hu YR, Lin J, Huang P (2019) Glucose oxidase-instructed multimodal synergistic cancer therapy. Adv Mater 32(28): e2003130. https://doi.org/10.1002/adma.202003130
    Ganapathy-Kanniappan S, Geschwind J-FH (2013) Tumor glycolysis as a target for cancer therapy: progress and prospects. Mol Cancer 12(1): 1−11 doi: 10.1186/1476-4598-12-1
    Gao L, Chen Q, Gong T, Liu J, Li C (2019) Recent advancement of imidazolate framework (ZIF-8) based nanoformulations for synergistic tumor therapy. Nanoscale 11(44): 21030−21045 doi: 10.1039/C9NR06558J
    Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 49(Suppl 2): 24S−42S doi: 10.2967/jnumed.107.047258
    Gonzalez PS, O’Prey J, Cardaci S, Barthet VJ, Sakamaki J-i, Beaumatin F, Roseweir A, Gay DM, Mackay G, Malviya G (2018) Mannose impairs tumour growth and enhances chemotherapy. Nature 563(7733): 719−723 doi: 10.1038/s41586-018-0729-3
    Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16(10): 635−649
    Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6: 7240. https://doi.org/10.1038/ncomms8240
    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3): 211−218
    Nencioni A, Caffa I, Cortellino S, Longo VD (2018) Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 18(11): 707−719 doi: 10.1038/s41568-018-0061-0
    Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1): 27−47 doi: 10.1016/j.cmet.2015.12.006
    Pelicano H, Martin D, Xu R, and, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34): 4633−4646 doi: 10.1038/sj.onc.1209597
    Poddar A, Conesa JJ, Liang K, Dhakal S, Reineck P, Bryant G, Pereiro E, Ricco R, Amenitsch H, Doonan C (2019) Encapsulation, visualization and expression of genes with biomimetically mineralized zeolitic imidazolate framework‐8 (ZIF‐8). Small 15(36): 1902268. https://doi.org/10.1002/smll.201902268
    Porporato PE, Dhup S, Dadhich RK, Copetti T, Sonveaux P (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review. Front Pharmacol 2: 49. https://doi.org/10.3389/fphar.2011.00049
    Qian Z, Zhao N, Wang C, Yuan W (2022) Injectable self-healing polysaccharide hydrogel loading CuS and pH-responsive DOX@ ZIF-8 nanoparticles for synergistic photothermal-photodynamic-chemo therapy of cancer. J Mater Sci Technol 127(10): 245−255
    Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab 7(1): 1−22 doi: 10.1186/1743-7075-7-1
    Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18(6): 598−608 doi: 10.1016/j.ceb.2006.10.005
    Sun C-Y, Qin C, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Su Z-M, Huang P, Wang C-G, Wang E-B (2012) Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 41(23): 6906−6909 doi: 10.1039/c2dt30357d
    Sun Q, Bi H, Wang Z, Li C, Wang X, Xu J, Zhu H, Zhao R, He F, Gai S (2019) Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials 223: 119473. https://doi.org/10.1016/j.biomaterials.2019.119473
    Oronsky BT, Oronsky N, Fanger GR, Parker CW, Caroen SZ, Lybeck M, Scicinski JJ (2014) Follow the ATP: tumor energy production: a perspective. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem-Anti-Cancer Agents) 14(9): 1187−1198
    Thorens B, Mueckler M (2010) Glucose transporters in the 21st Century. Am J Physiol-Endocrinol Metab 298(2): E141−E145 doi: 10.1152/ajpendo.00712.2009
    Xu R-h, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65(2): 613−621 doi: 10.1158/0008-5472.613.65.2
    Yan S, Zeng X, Wang Y, Liu BF (2020) Biomineralization of bacteria by a metal–organic framework for therapeutic delivery. Adv Healthc Mater 9(12): 2000046. https://doi.org/10.1002/adhm.202000046
    Zeng X, Ruan Y, Chen Q, Yan S, Huang W (2022) Biocatalytic cascade in tumor microenvironment with a Fe2O3/Au hybrid nanozyme for synergistic treatment of triple negative breast cancer. Chem Eng J 138422. https://doi.org/10.1016/j.cej.2022.138422
    Zhao Y, Butler EB, Tan M (2013) Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis 4(3): e532. https://doi.org/10.1038/cddis.2013.60
  • Supplementary figures.pdf
    suppl_data.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (872) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return