Turn off MathJax
Article Contents
Liu Zihua. Antioxidant activity of the thioredoxin system[J]. Biophysics Reports. doi: 10.52601/bpr.2023.230002
Citation: Liu Zihua. Antioxidant activity of the thioredoxin system[J]. Biophysics Reports. doi: 10.52601/bpr.2023.230002

Antioxidant activity of the thioredoxin system

doi: 10.52601/bpr.2023.230002
More Information
  • Corresponding author: liuwrax@126.com (Z. Liu)
  • Received Date: 12 January 2023
  • Accepted Date: 08 March 2023
  • Available Online: 11 May 2023
  • The thioredoxin system is composed of thioredoxin (Trx), thioredoxin reductase (TR) and reduced nicotinamide adenine dinucleotide phosphate. Trx is an important antioxidant molecule that can resist cell death caused by various stresses and plays a prominent role in redox reactions. TR is a protein that contains selenium (selenocysteine), in three main forms, namely, TR1, TR2 and TR3. TR1, TR2 and TR3 are mainly distributed in the cytoplasm, mitochondria, and testes, respectively. TR can regulate cell growth and apoptosis. After a cell becomes cancerous, the expression of TR is increased to promote cell growth and metastasis. The Trx system is closely related to neurodegenerative diseases, parasitic infections, acquired immunodeficiency syndrome, rheumatoid arthritis, hypertension, myocarditis, and so on. In addition, the Trx system can remove the reactive oxygen species in the body and keep the inside and outside of the cell in a balanced state. In summary, the Trx system is an important target for the drug treatment of many diseases.

  • Zihua Liu declares that he has no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Aguado-Llera D, Martinez-Gomez AI, Prieto J, Marenchino M, Traverso JA, Gomez J, Chueca A, Neira JL (2011) The conformational stability and biophysical properties of the eukaryotic thioredoxins of Pisum sativum are not family-conserved. PLoS One 6(2): e17068. https://doi.org/10.1371/journal.pone.0017068
    Bjorklund G, Zou LL, Peana M, Chasapis CT, Hangan T, Lu J, Maes M (2022) The role of the thioredoxin system in brain diseases. Antioxidants (Basel) 11(11): 2161. https://doi.org/10.3390/antiox11112161
    Bjornstedt M, Xue JY, Huang WH, Akesson B, Holmgren A (1994) The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 269(47): 29382−29384 doi: 10.1016/S0021-9258(18)43889-6
    Campbell JD, Lakshmanan R, Selvaraju V, Accorsi D, McFadden DW, Maulik N, Thirunavukkarasu M (2021) Engineered resveratrol-loaded fibrous scaffolds promotes functional cardiac repair and regeneration through Thioredoxin-1 mediated VEGF pathway. Int J Pharm 597: 120236. https://doi.org/10.1016/j.ijpharm.2021.120236
    Che CC, Su T, Sun P, Li GZ, Liu JF, Wei ZF, Yang G (2020) Thioredoxin and protein-disulfide isomerase selectivity for redox regulation of proteins in Corynebacterium glutamicum. J Gen Appl Microbiol 66(5): 245−255 doi: 10.2323/jgam.2019.09.002
    de Cavanagh EMV, Ferder M, Inserra F, Ferder L (2009) Angiotensin II, mitochondria, cytoskeletal, and extracellular matrix connections: an integrating viewpoint. Am J Physiol-Heart C 296(3): H550−H558 doi: 10.1152/ajpheart.01176.2008
    Eberle RJ, Kawai LA, de Moraes FR, Olivier D, do Amaral MS, Tasic L, Ami RK, Coronado MA (2018) Inhibition of thioredoxin A1 from Corynebacterium pseudotuberculosis by polyanions and flavonoids. Int J Biol Macromol 117: 1066−1073 doi: 10.1016/j.ijbiomac.2018.06.022
    Gao QZ, Zhang GJ, Zheng YQ, Yang Y, Chen C, Xia J, Liang L, Lei C, Hu Y, Cai XF, Zhang WL, Tang H, Chen YX, Huang AL, Wang K, Tang N (2020) SLC27A5 deficiency activates NRF2/TXNRD1 pathway by increased lipid peroxidation in HCC. Cell Death Differ 27(3): 1086−1104 doi: 10.1038/s41418-019-0399-1
    Gasdaska JR, Gasdaska PY, Gallegos A, Powis G (1996) Human thioredoxin reductase gene localization to chromosomal position 12q23-q24.1 and mRNA distribution in human tissue. Genomics 37(2): 257-259
    Gasdaska PY, Gasdaska JR, Cochran S, Powis G (1995) Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 373(1): 5−9 doi: 10.1016/0014-5793(95)01003-W
    Gasdaska PY, Oblong JE, Cotgreave IA, Powis G (1994) The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta. 1218(3): 292−296 doi: 10.1016/0167-4781(94)90180-5
    Gencheva R, Arner ESJ (2022) Thioredoxin reductase inhibition for cancer therapy. Annu Rev Pharmacol Toxicol 62: 177−196 doi: 10.1146/annurev-pharmtox-052220-102509
    Ghneim HK, Alfhili MA, Alharbi SO, Alhusayni SM, Abudawood M, Aljaser FS, Al-Sheikh YA (2022) Comprehensive investigations of key mitochondrial metabolic changes in senescent human fibroblasts. Korean J Physiol Pharmacol 26(4): 263−275 doi: 10.4196/kjpp.2022.26.4.263
    Hashemy SI, Ungerstedt JS, Avval FZ, Holmgren A (2006) Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem 281(16): 10691−10697 doi: 10.1074/jbc.M511373200
    Jakupoglu C, Przemeck GKH, Schneider M, Moreno SG, Mayr N, Hatzopoulos AK, de Angelis MH, Wurst W, Bornkamm GW, Brielmeier M, Conrad M (2005) Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol 25(5): 1980−1988 doi: 10.1128/MCB.25.5.1980-1988.2005
    Jan YH, Heck DE, Dragomir AC, Gardner CR, Laskin DL, Laskin JD (2014) Acetaminophen reactive intermediates target hepatic thioredoxin reductase. Chem Res Toxicol 27(5): 882−894 doi: 10.1021/tx5000443
    Kameritsch P, Singer M, Nuernbergk C, Rios N, Reyes AM, Schmidt K, Kirsch J, Schneider H, Muller S, Pogoda K, Cui RC, Kirchner T, de Wit C, Lange-Sperandio B, Pohl U, Conrad M, Radi R, Beck H (2021) The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci USA 118(7): e1921828118. https://doi.org/10.1073/pnas.1921828118
    Kreimer S, Sohling B, Andreesen JR (1997) Two closely linked genes encoding thioredoxin and thioredoxin reductase in Clostridium litorale. Arch Microbiol 168(4): 328−337 doi: 10.1007/s002030050506
    Krnajski Z, Gilberger TW, Walter RD, Cowman AF, Muller S (2002) Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J Biol Chem 277(29): 25970−25975 doi: 10.1074/jbc.M203539200
    Kudin AP, Augustynek B, Lehmann AK, Kovacs R, Kunz WS (2012) The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. BBA-Bioenergetics 1817(10): 1901−1906 doi: 10.1016/j.bbabio.2012.02.023
    Lamoke F, Ripandelli G, Webster S, Montemari A, Maraschi A, Martin P, Marcus DM, Liou GI, Bartoli M (2012) Loss of thioredoxin function in retinas of mice overexpressing amyloid β. Free Radical Bio Med 53(3): 577−588 doi: 10.1016/j.freeradbiomed.2012.04.010
    Laurent TC, Moore EC, Reichard P (1964) Enzymatic synthesis of deoxyribonucleotides. IV. Isolation and characterization of thioredoxin, the hydrogen donor from Escherichia coli B. J Biol Chem 239(10): 3436−3444
    Lennon BW, Williams CH, Ludwig ML (1999) Crystal structure of reduced thioredoxin reductase from Escherichia coli: structural flexibility in the isoalloxazine ring of the flavin adenine dinucleotide cofactor. Protein Sci 8(11): 2366−2379
    Lewin MH, Hume R, Howie AF, Richard K, Arthur JR, Nicol F, Walker SW, Beckett GJ (2001) Thioredoxin reductase and cytoplasmic glutathione peroxidase activity in human foetal and neonatal liver. BBA-GEN Subjects 1526(3): 237−241 doi: 10.1016/S0304-4165(01)00133-7
    Li H, Xu CQ, Li QF, Gao XX, Sugano E, Tomita H, Yang LM, Shi S (2017) Thioredoxin 2 offers protection against mitochondrial oxidative stress in H9c2 cells and against myocardial hypertrophy induced by hyperglycemia. Int J Mol Sci 18(9): 1958. https://doi.org/10.3390/ijms18091958
    Liu AP, Li FN, Xu P, Chen YM, Liang XS, Zheng SJ, Meng HC, Zhu YM, Mo JL, Gong CM, Zhou JC (2023) Gpx4, Selenov, and Txnrd3 are three most testis-abundant selenogenes resistant to dietary selenium concentrations and actively expressed during reproductive ages in rats. Biol Trace Elem Res 201(1): 250−259 doi: 10.1007/s12011-022-03118-5
    Liu YM, Min W (2002) Thioredoxin promotes ASK1 ubiquitination and degradation to inhibit ASK1-mediated apoptosis in a redox activity-independent manner. Circ Res 90(12): 1259−1266 doi: 10.1161/01.RES.0000022160.64355.62
    Liu Z, Huang SL, Li MM, Huang ZS, Lee KS, Gu LQ (2009) Inhibition of thioredoxin reductase by mansonone F analogues: implications for anticancer activity. Chem-Biol Interact 177(1): 48−57 doi: 10.1016/j.cbi.2008.09.002
    Lovell MA, Xie CS, Gabbita SP, Markesbery WR (2000) Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer's disease brain. Free Radic Biol Med 28(3): 418−427 doi: 10.1016/S0891-5849(99)00258-0
    Lu J, Zhong LW, Lonn ME, Burk RF, Hill KE, Holmgren A (2009) Penultimate selenocysteine residue replaced by cysteine in thioredoxin reductase from selenium-deficient rat liver. FASEB J 23(8): 2394−2402 doi: 10.1096/fj.08-127662
    Maiuri T, Bowie LE, Truant R (2019) DNA repair signaling of huntingtin: the next link between late-onset neurodegenerative disease and oxidative DNA damage. DNA Cell Biol 38(1): 1−6 doi: 10.1089/dna.2018.4476
    Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radical Bio Med 42(6): 872−881 doi: 10.1016/j.freeradbiomed.2006.12.021
    Matsushima S, Ide T, Yamato M, Matsusaka H, Hattori F, Ikeuchi M, Kubota T, Sunagawa K, Hasegawa Y, Kurihara T, Oikawa S, Kinugawa S, Tsutsui H (2006) Overexpression of mitochondrial peroxiredoxin-3 prevents left ventricular remodeling and failure after myocardial infarction in mice. Circulation 113(14): 1779−1786 doi: 10.1161/CIRCULATIONAHA.105.582239
    Maulik N, Das DK (2008) Emerging potential of thioredoxin and thioredoxin interacting proteins in various disease conditions. Biochim Biophys Acta. 1780(11): 1368−1382 doi: 10.1016/j.bbagen.2007.12.008
    Maurice MM, Nakamura H, Gringhuis S, Okamoto T, Yoshida S, Kullmann F, Lechner S, van der Voort EAM, Leow A, Versendaal J, Muller-Ladner U, Yodoi J, Tak PP, Breedveld FC, Verweij CL (1999) Expression of the thioredoxin-thioredoxin reductase system in the inflamed joints of patients with rheumatoid arthritis. Arthritis Rheum 42(11): 2430−2439 doi: 10.1002/1529-0131(199911)42:11<2430::AID-ANR22>3.0.CO;2-6
    Miranda-Vizuete A, Damdimopoulos AE, Spyrou G (2000) The mitochondrial thioredoxin system. Antioxid Redox Signal 2(4): 801−U195 doi: 10.1089/ars.2000.2.4-801
    Nguyen P, Awwad RT, Smart DDK, Spitz DR, Gius D (2006) Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett 236(2): 164−174 doi: 10.1016/j.canlet.2005.04.028
    Ogata FT, Sato AYS, Coppo L, Arai RJ, Stern AI, Monteiro HP (2022) Thiol-based antioxidants and the epithelial/mesenchymal transition in cancer. Antioxid Redox Signal 36(13): 1037−1050
    Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9(7): 775−806 doi: 10.1089/ars.2007.1528
    Park WH (2020) Upregulation of thioredoxin and its reductase attenuates arsenic trioxide-induced growth suppression in human pulmonary artery smooth muscle cells by reducing oxidative stress. Oncol Rep 43(1): 358−367
    Powis G, Kirkpatrick DL (2007) Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol 7(4): 392−397 doi: 10.1016/j.coph.2007.04.003
    Preci DP, Almeida A, Weiler AL, Franciosi MLM, Cardoso AM (2021) Oxidative damage and antioxidants in cervical cancer. Int J Gynecol Cancer 31(2): 265−271 doi: 10.1136/ijgc-2020-001587
    Roman MG, Flores LC, Cunningham GM, Cheng C, Allen C, Hubbard GB, Bai Y, Saunders TL, Ikeno Y (2020) Thioredoxin and aging: what have we learned from the survival studies? Aging Pathobiol Ther 2(3): 126-133
    Schenk H, Klein M, Erdbrugger W, Droge W, Schulzeosthoff K (1994) Distinct effects of thioredoxin and antioxidants on the activation of transcription factors NF-B and AP-1. Proc Natl Acad Sci USA 91(5): 1672−1676 doi: 10.1073/pnas.91.5.1672
    Seyfried J, Wullner U (2007) Inhibition of thioredoxin reductase induces apoptosis in neuronal cell lines: Role of glutathione and the MKK4/JNK pathway. Biochem Bioph Res Commun 359(3): 759−764 doi: 10.1016/j.bbrc.2007.05.176
    Shelar SB, Kaminska KK, Reddy SA, Kumar D, Tan CT, Yu VC, Lu J, Holmgren A, Hagen T, Chew EH (2015) Thioredoxin-dependent regulation of AIF-mediated DNA damage. Free Radic Biol Med 87: 125−136 doi: 10.1016/j.freeradbiomed.2015.06.029
    Singh A, Kukreti R, Saso L, Kukreti S (2019) Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24(8): 1583. https://doi.org/10.3390/molecules24081583
    Smith AD, Guidry CA, Morris VC, Levander OA (1999) Aurothioglucose inhibits murine thioredoxin reductase activity in vivo. J Nutr 129(1): 194−198 doi: 10.1093/jn/129.1.194
    Sun QA, Kirnarsky L, Sherman S, Gladyshev VN (2001) Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc Natl Acad Sci USA 98(7): 3673−3678 doi: 10.1073/pnas.051454398
    Sun QA, Wu YL, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN (1999) Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 274(35): 24522−24530 doi: 10.1074/jbc.274.35.24522
    Sun WJ, Zhu JW, Li S, Tang CH, Zhao QY, Zhang JM (2020) Selenium supplementation protects against oxidative stress-induced cardiomyocyte cell cycle arrest through activation of PI3K/AKT. Metallomics 12(12): 1965−1978 doi: 10.1039/d0mt00225a
    Tuladhar A, Hondal RJ, Colon R, Hernandez EL, Rein KS (2019) Effectors of thioredoxin reductase: brevetoxins and manumycin — A. Comp Biochem Physiol C Toxicol Pharmacol 217: 76−86 doi: 10.1016/j.cbpc.2018.11.015
    Welsh SJ, Bellamy WT, Briehl MA, Powis G (2002) The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1 alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res 62(17): 5089−5095
    Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH (2000) Thioredoxin reductase — Two modes of catalysis have evolved. Eur J Biochem 267(20): 6110−6117 doi: 10.1046/j.1432-1327.2000.01702.x
    Xinastle-Castillo LO, Landa A (2022) Physiological and modulatory role of thioredoxins in the cellular function. Open Med 17(1): 2021−2035 doi: 10.1515/med-2022-0596
    Yi ZH, Jiang L, Zhao L, Zhou ML, Ni YL, Yang YY, Yang HX, Yang LJ, Zhang Q, Kuang YM, Deng MJ, Zhu YC (2019) Glutathione peroxidase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)-dependent stabilization of hypoxia-inducible factor 1-α and 2-α. J Cell Biochem 120(11): 19124−19136 doi: 10.1002/jcb.29240
    Yuan ZY, Kishimoto C, Shioji K, Nakamura H, Yodoi JJ, Sasayama S (2003) Temocapril treatment ameliorates autoimmune myocarditis associated with enhanced cardiomyocyte thioredoxin expression. Mol Cell Biochem 248(1-2): 185−192
    Zhang B, Liu Y, Li X, Xu J, Fang J (2018) Small molecules to target the selenoprotein thioredoxin reductase. Chem-Asian J 13(23): 3593−3600 doi: 10.1002/asia.201801136
    Zhang HS, Wang ZH, Huang JW, Cao J, Zhou YZ, Zhou JL (2020) A novel thioredoxin-dependent peroxiredoxin (TPx-Q) plays an important role in defense against oxidative stress and is a possible drug target in Babesia microti. Front Vet Sci 7: 76. https://doi.org/10.3389/fvets.2020.00076
    Zhang JM, Li XM, Han X, Liu RJ, Fang JG (2017) Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 38(9): 794−808 doi: 10.1016/j.tips.2017.06.001
    Zhong LW, Arner ESJ, Holmgren A (2000) Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc Natl Acad Sci USA 97(11): 5854−5859 doi: 10.1073/pnas.100114897
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (54) PDF downloads(2) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint