Volume 8 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Buyun Tian, Maoge Zhou, Fengping Feng, Xiaojun Xu, Pei Wang, Huiqin Luan, Wei Ji, Yanhong Xue, Tao Xu. Cryogenic superresolution correlative light and electron microscopy of vitreous sections[J]. Biophysics Reports, 2022, 8(4): 193-204. doi: 10.52601/bpr.2022.220005
Citation: Buyun Tian, Maoge Zhou, Fengping Feng, Xiaojun Xu, Pei Wang, Huiqin Luan, Wei Ji, Yanhong Xue, Tao Xu. Cryogenic superresolution correlative light and electron microscopy of vitreous sections[J]. Biophysics Reports, 2022, 8(4): 193-204. doi: 10.52601/bpr.2022.220005

Cryogenic superresolution correlative light and electron microscopy of vitreous sections

doi: 10.52601/bpr.2022.220005
More Information
  • Fluorescence microscopy and electron microscopy complement each other as the former provides labelling and localisation of specific molecules and target structures while the latter possesses excellent revolving power of fine structure in context. These two techniques can combine as correlative light and electron microscopy (CLEM) to reveal the organisation of materials within the cell. Frozen hydrated sections allow microscopic observations of cellular components in situ in a near-native state and are compatible with superresolution fluorescence microscopy and electron tomography if sufficient hardware and software support is available and a well-designed protocol is followed. The development of superresolution fluorescence microscopy greatly increases the precision of fluorescence annotation of electron tomograms. Here, we provide detailed instructions on how to perform cryogenic superresolution CLEM on vitreous sections. From fluorescence-labelled cells to high pressure freezing, cryo-ultramicrotomy, cryogenic single-molecule localisation microscopy, cryogenic electron tomography and image registration, electron tomograms with features of interest highlighted by superresolution fluorescence signals are expected to be obtained.

  • Buyun Tian, Maoge Zhou, Fengping Feng, Xiaojun Xu, Pei Wang, Huiqin Luan, Wei Ji, Yanhong Xue and Tao Xu declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Asano S, Engel BD, Baumeister W (2015) In situ cryo-electron tomography: a post-reductionist approach to structural biology. J Mol Biol 428(2): 332−343
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642−1645 doi: 10.1126/science.1127344
    Briegel A, Chen SY, Koster AJ, Plitzko JM, Schwartz CL, Jensen GJ (2010) Correlated light and electron cryo-microscopy. Methods Enzymol 481: 317−341
    Chang YW, Chen SY, Tocheva EI, Treuner-Lange A, Loebach S, Sogaard-Andersen L, Jensen GJ (2014) Correlated cryogenic photoactivated localization microscopy and cryo-electron tomography. Nat Methods 11(7): 737−739 doi: 10.1038/nmeth.2961
    Chen M, Dai W, Sun SY, Jonasch D, He CY, Schmid MF, Chiu W, Ludtke SJ (2017) Convolutional neural networks for automated annotation of cellular cryo-electron tomograms. Nat Methods 14(10): 983−985 doi: 10.1038/nmeth.4405
    Dahlberg PD, Moerner WE (2021) Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale. Annu Rev Phys Chem 72: 253−278 doi: 10.1146/annurev-physchem-090319-051546
    Dahlberg PD, Saurabh S, Sartor AM, Wang JR, Mitchell PG, Chiu W, Shapiro L, Moerner WE (2020) Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in Caulobacter. Proc Natl Acad Sci USA 117(25): 13937−13944
    de Boer P, Hoogenboom JP, Giepmans BNG (2015) Correlated light and electron microscopy: ultrastructure lights up! Nat Methods 12(6): 503−513
    DeRosier DJ (2021) Where in the cell is my protein. Q Rev Biophys 54: e9. https://doi.org/10.1017/S003358352100007X
    Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5): 22−36
    Fu ZF, Peng DM, Zhang MS, Xue FD, Zhang R, He WT, Xu T, Xu PY (2020) mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat Methods 17(1): 55−58 doi: 10.1038/s41592-019-0613-6
    Goddard TD, Huang CC, Ferrin TE (2007) Visualizing density maps with UCSF Chimera. J Struct Biol 157(1): 281−287 doi: 10.1016/j.jsb.2006.06.010
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11): 4258−4272 doi: 10.1529/biophysj.106.091116
    Hoffman DP, Shtengel G, Xu CS, Campbell KR, Freeman M, Wang L, Milkie DE, Pasolli HA, Iyer N, Bogovic JA, Stabley DR, Shirinifard A, Pang S, Peale D, Schaefer K, Pomp W, Chang C-L, Lippincott-Schwartz J, Kirchhausen T, Solecki DJ, Betzig E, Hess HF. (2020) Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells. Science 367(6475): eaaz5357. https://doi.org/10.1126/science/aaz5357
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera — A visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605−1612 doi: 10.1002/jcc.20084
    Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JAG (2012) Precise, correlated fluorescence microscopy and electron tomography of Lowicryl sections using fluorescent fiducial markers. Methods Cell Biol 111: 235−257
    Li XM, Lei JL, Wang HW (2018) The application of CorrSightTM in correlative light and electron microscopy of vitrified biological specimens. Biophys Rep 4(3): 143−152 doi: 10.1007/s41048-018-0059-x
    Liu B, Xue YH, Zhao W, Chen Y, Fan CY, Gu LS, Zhang YD, Zhang X, Sun L, Huang XJ, Ding W, Sun F, Ji W, Xu T (2015) Three-dimensional super-resolution protein localization correlated with vitrified cellular context. Sci Rep 5: 13017. https://doi.org/10.1038/srep13017
    Lucic V, Forster F, Baumeister W (2005) Structural studies by electron tomography: From cells to molecules. Annu Rev Biochem 74: 833−865 doi: 10.1146/annurev.biochem.73.011303.074112
    Mastronarde DN, Held SR (2017) Automated tilt series alignment and tomographic reconstruction in IMOD. J Struct Biol 197(2): 102−113 doi: 10.1016/j.jsb.2016.07.011
    Milne JLS, Borgnia MJ, Bartesaghi A, Tran EEH, Earl LA, Schauder DM, Lengyel J, Pierson J, Patwardhan A, Subramaniam S (2013) Cryo-electron microscopy — A primer for the non-microscopist. FEBS J 280(1): 28−45 doi: 10.1111/febs.12078
    Orlova EV, Saibil HR (2011) Structural analysis of macromolecular assemblies by electron microscopy. Chem Rev 111(12): 7710−7748 doi: 10.1021/cr100353t
    Paez-Segala MG, Sun MG, Shtengel G, Viswanathan S, Baird MA, Macklin JJ, Patel R, Allen JR, Howe ES, Piszczek G, Hess HF, Davidson MW, Wang Y, Looger LL (2015) Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat Methods 12(3): 215−218 doi: 10.1038/nmeth.3225
    Rust MJ, Bates M, Zhuang XW (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10): 793−795 doi: 10.1038/nmeth929
    Scher N, Avinoam O (2021) 50 Shades of CLEM: how to choose the right approach for you. Methods Cell Biol 162: 1−11
    Schwartz CL, Sarbash VI, Ataullakhanov FI, Mcintosh JR, Nicastro D (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227(2): 98−109 doi: 10.1111/j.1365-2818.2007.01794.x
    Tian BY, Xu XJ, Xue YH, Ji W, Xu T (2021) Cryogenic superresolution correlative light and electron microscopy on the frontier of subcellular imaging. Biophys Rev 13: 1163−1171 doi: 10.1007/s12551-021-00851-4
    Tuijtel MW, Koster AJ, Jakobs S, Faas FGA, Sharp TH (2019) Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci Rep 9: 1369. https://doi.org/10.1038/s41598-018-37728-8
    Wang SL, Li SG, Ji G, Huang XJ, Sun F (2017) Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophys Rep 3(1): 8−16
    Watanabe S, Punge A, Hollopeter G, Willig KI, Hobson RJ, Davis MW, Hell SW, Jorgensen EM (2011) Protein localization in electron micrographs using fluorescence nanoscopy. Nat Methods 8(1): 80−84 doi: 10.1038/nmeth.1537
    Xu XJ (2019) The construction of the ultra-stable super-resolution fluorescence cryo-microscopy and the development of the support film for correlative light and electron cryo-microscopy. Dissertation, Huazhong University of Science and Technology
    Xu XJ, Xue YH, Tian BY, Feng FP, Gu LS, Li WX, Ji W, Xu T (2018) Ultra-stable super-resolution fluorescence cryo-microscopy for correlative light and electron cryo-microscopy. Sci China Life Sci 61(11): 1312−1319 doi: 10.1007/s11427-018-9380-3
    Yang ZY, Zhao XC, Xu JS, Shang WN, Tong C (2018) A novel fluorescent reporter detects plastic remodeling of mitochondria–ER contact sites. J Cell Sci 131(1): jcs208686. https://doi.org/10.1242/jcs.208686
    Zhang YD, Gu LS, Chang H, Ji W, Chen Y, Zhang MS, Yang L, Liu B, Chen LY, Xu T (2013) . Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4(8): 598−606 doi: 10.1007/s13238-013-3904-1
    Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng YF, Agard DA (2017) MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14(4): 331−332 doi: 10.1038/nmeth.4193
  • Supplementary Materials.pdf
    Supplementary Movie S1.mp4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (993) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return