Volume 8 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Mingjun Cai, Huili Wang, Guanfang Zhao, Hongru Li, Jing Gao, Hongda Wang. Cell membrane sample preparation method of combined AFM and dSTORM analysis[J]. Biophysics Reports, 2022, 8(4): 183-192. doi: 10.52601/bpr.2022.220004
Citation: Mingjun Cai, Huili Wang, Guanfang Zhao, Hongru Li, Jing Gao, Hongda Wang. Cell membrane sample preparation method of combined AFM and dSTORM analysis[J]. Biophysics Reports, 2022, 8(4): 183-192. doi: 10.52601/bpr.2022.220004

Cell membrane sample preparation method of combined AFM and dSTORM analysis

doi: 10.52601/bpr.2022.220004
More Information
  • Corresponding author: caimingjun@ciac.ac.cn (M. Cai); hdwang@ciac.ac.cn (H. Wang)
  • Received Date: 31 January 2022
  • Accepted Date: 06 April 2022
  • Available Online: 25 July 2022
  • Publish Date: 31 August 2022
  • A major role of cell membranes is to provide an ideal environment for the constituent proteins to perform their biological functions. A deep understanding of the membrane proteins assembly process under physiological conditions is quite important to elucidate both the structure and the function of the cell membranes. Along these lines, in this work, a complete workflow of the cell membrane sample preparation and the correlated AFM and dSTORM imaging analysis methods are presented. A specially designed, angle-controlled sample preparation device was used to prepare the cell membrane samples. The correlated distributions of the specific membrane proteins with the topography of the cytoplasmic side of the cell membranes can be obtained by performing correlative AFM and dSTORM measurements. These methods are ideal for systematically studying the structure of the cell membranes. The proposed method of the sample characterization was not only limited to the measurement of the cell membrane but also can be applied for both biological tissue section analysis and detection.

  • Mingjun Cai, Huili Wang, Guanfang Zhao, Hongru Li, Jing Gao and Hongda Wang declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by the any of the authors.

  • loading
  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9): 930−933 doi: 10.1103/PhysRevLett.56.930
    Cai X, Xing X, Cai J, Chen Q, Wu S, Huang F (2010) Connection between biomechanics and cytoskeleton structure of lymphocyte and Jurkat cells: an AFM study. Micron 41(3): 257−262 doi: 10.1016/j.micron.2009.08.011
    Chacko JV, Zanacchi FC, Harke B, Lanzano L, Canale C, Diaspro A (2014) Insight into hybrid nanoscopy techniques: STED AFM & STORM AFM. Biophys J 106(2): 396A−396A
    Frankel DJ, Pfeiffer JR, Surviladze Z, Johnson AE, Oliver JM, Wilson BS, Burns AR (2006) Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys J 90(7): 2404−2413 doi: 10.1529/biophysj.105.073692
    Frederix P, Bosshart PD, Engel A (2009) Atomic force microscopy of biological membranes. Biophys J 96(2): 329−338 doi: 10.1016/j.bpj.2008.09.046
    Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo ML (2009) AFM for structure and dynamics of biomembranes. BBA-Biomembranes 1788(1): 254−266 doi: 10.1016/j.bbamem.2008.08.021
    Hauser M, Wojcik M, Kim D, Mahmoudi M, Li W, Xu K (2017) Correlative super-resolution microscopy: new dimensions and new opportunities. Chem Rev 117(11): 7428−7456 doi: 10.1021/acs.chemrev.6b00604
    Huang B, Bates M, Zhuang XW (2009) Super-resolution fluorescence microscopy. Ann Rev Biochem78: 993-1016
    Jiang JG, Hao X, Cai MJ, Shan YP, Shang X, Tang ZY, Wang HD (2009) Localization of Na+-K+ ATPases in quasi-native cell membranes. Nano Lett 9(12): 4489−4493 doi: 10.1021/nl902803m
    Kada G, Kienberger F, Hinterdorfer P (2008) Atomic force microscopy in bionanotechnology. Nano Today 3(1-2): 12−19 doi: 10.1016/S1748-0132(08)70011-2
    Kuyukina MS, Ivshina IB, Korshunova IO, Rubtsova EV (2014) Assessment of bacterial resistance to organic solvents using a combined confocal laser scanning and atomic force microscopy (CLSM/AFM). J Microbiol Methods 107: 23−29 doi: 10.1016/j.mimet.2014.08.020
    Li M, Dang D, Liu L, Xi N, Wang Y (2017) Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Transact Nanobiosci 16(6): 523−540 doi: 10.1109/TNB.2017.2714462
    Muller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrene YF, Alsteens D (2021) Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem Rev 121(19): 11701−11725 doi: 10.1021/acs.chemrev.0c00617
    Nandi T, Ainavarapu SRK (2021) Applications of atomic force microscopy in modern biology. Emerg TopLife Sci 5(1): 103−111
    Odermatt PD, Shivanandan A, Deschout H, Jankele R, Nievergelt AP, Feletti L, Davidson MW, Radenovic A, Fantner GE (2015) High-Resolution correlative microscopy: bridging the gap between single molecule localization microscopy and atomic force microscopy. Nano Lett 15(8): 4896−4904 doi: 10.1021/acs.nanolett.5b00572
    Oreopoulos J, Yip CM (2009) Probing membrane order and topography in supported lipid bilayers by combined polarized total internal reflection fluorescence-atomic force microscopy. Biophys J 96(5): 1970−1984 doi: 10.1016/j.bpj.2008.11.041
    Pi J, Jin H, Yang F, Chen ZW, Cai JY (2014) In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine. Nanoscale 6(21): 12229−12249 doi: 10.1039/C4NR04195J
    Shan YP, Wang HD (2015) The structure and function of cell membranes examined by atomic force microscopy and single-molecule force spectroscopy. Chem Soc Rev 44(11): 3617−3638 doi: 10.1039/C4CS00508B
    Shan YP, Wang ZY, Hao XA, Shang X, Cai MJ, Jiang JG, Fang XX, Wang HD, Tang ZY (2010) Locating the Band III protein in quasi-native cell membranes. Anal Methods 2(7): 805−808 doi: 10.1039/c0ay00278j
    Wu Y, Hu Y, Cai J, Ma S, Wang X, Chen Y, Pan Y (2009) Time-dependent surface adhesive force and morphology of RBC measured by AFM. Micron 40(3): 359−364 doi: 10.1016/j.micron.2008.10.003
    Zhang Q, Li S, Yang Y, Shan Y, Wang H (2021) Studying structure and functions of cell membranes by single molecule biophysical techniques. Biophys Rep 7(5): 384−398 doi: 10.52601/bpr.2021.210018
    Zhao GF, Li HR, Gao J, Cai MJ, Xu HJ, Shi Y, Wang HL, Wang HD (2021) Insight into the different channel proteins of human red blood cell membranes revealed by combined dSTORM and AFM techniques. Anal Chem 93(42): 14113−14120 doi: 10.1021/acs.analchem.1c02382
    Zhou LL, Cai MJ, Tong T, Wang HD (2017) Progress in the correlative atomic force microscopy and optical microscopy. Sensors 17(4): 938. https://doi.org/10.3390/s17040938
    Zhou LL, Cai MJ, Wang HL, Wang HD (2020a) Development of correlative super-resolution fluorescence and three-dimensional topography imaging microscopy. Chin J Anal Chem 48(2): 174−179
    Zhou LL, Gao J, Wang HL, Shi Y, Xu HJ, Yan QY, Jing YY, Jiang JG, Cai MJ, Wang HD (2020b) Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. Nanoscale 12(18): 9950−9957 doi: 10.1039/C9NR10931E
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1189) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return