Volume 7 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Si Sun, Xinzhu Chen, Jing Chen, Junying Wang, Xiao-dong Zhang. Nanozymes with bioorthogonal reaction for intelligence nanorobots[J]. Biophysics Reports, 2021, 7(1): 8-20. doi: 10.52601/bpr.2021.200044
Citation: Si Sun, Xinzhu Chen, Jing Chen, Junying Wang, Xiao-dong Zhang. Nanozymes with bioorthogonal reaction for intelligence nanorobots[J]. Biophysics Reports, 2021, 7(1): 8-20. doi: 10.52601/bpr.2021.200044

Nanozymes with bioorthogonal reaction for intelligence nanorobots

doi: 10.52601/bpr.2021.200044
Funds:  This work was financially supported by the National Natural Science Foundation of China (91859101, 81971744, U1932107, 82001952 and 81471786), National Natural Science Foundation of Tianjin (19JCZDJC34000), the Innovation Foundation of Tianjin University, and CAS Interdisciplinary Innovation Team (JCTD-2020-08).
More Information
  • Corresponding author: xiaodongzhang@tju.edu.cn (X. D. Zhang)
  • Received Date: 07 September 2020
  • Accepted Date: 04 November 2020
  • Available Online: 20 April 2021
  • Publish Date: 28 February 2021
  • Bioorthogonal reactions have attained great interest and achievements in various fields since its first appearance in 2003. Compared to traditional chemical reactions, bioorthogonal chemical reactions mediated by transition metals catalysts can occur under physiological conditions in the living system without interfering with or damaging other biochemical events happening simultaneously. The idea of using nanomachines to perform precise and specific tasks in living systems is regarded as the frontier in nanomedicine. Bioorthogonal chemical reactions and nanozymes have provided new potential and strategies for nanomachines used in biomedical fields such as drug release, imaging, and bioengineering. Nanomachines, also called as intelligence nanorobots, based on nanozymes with bioorthogonal reactions show better biocompatibility and water solubility in living systems and perform controlled and adjustable stimuli-triggered response regarding to different physiological environments. In this review, we review the definition and development of bioorthogonal chemical reactions and describe the basic principle of bioorthogonal nanozymes fabrication. We also review several controlled and adjustable stimuli-triggered intelligence nanorobots and their potential in therapeutic and engineered applications. Furthermore, we summarize the challenges in the use of intelligence nanorobots based on nanozymes with bioorthogonal chemical reactions and propose promising vision in smart nanodevices along this appealing avenue of research.
  • *Authors contributed equally to this work.
  • loading
  • [1]
    Adam C, Perez-Lopez AM, Hamilton L, Rubio-Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti-Broceta A (2018) Bioorthogonal uncaging of the active metabolite of irinotecan by palladium-functionalized microdevices. Chemistry 24(63): 16783−16790 doi: 10.1002/chem.201803725
    [2]
    Anhauser L, Huwel S, Zobel T, Rentmeister A (2019) Multiple covalent fluorescence labeling of eukaryotic mRNA at the poly(A) tail enhances translation and can be performed in living cells. Nucleic Acids Res 47(7): e42. https://doi.org/10.1093/nar/gkz084
    [3]
    Bertozzi CR (2011) A decade of bioorthogonal chemistry. Acc Chem Res 44(9): 651−653 doi: 10.1021/ar200193f
    [4]
    Bildstein L, Dubernet C, Couvreur P (2011) Prodrug-based intracellular delivery of anticancer agents. Adv Drug Deliver Rev 63(1-2): 3−23 doi: 10.1016/j.addr.2010.12.005
    [5]
    Boyce M, Bertozzi CR (2011) Bringing chemistry to life. Nat Methods 8(8): 638−642 doi: 10.1038/nmeth.1657
    [6]
    Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L (2019) Recent developments in antibacterial therapy: focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24(10): 1991. https://doi.org/10.3390/molecules24101991
    [7]
    Cao-Milán R, Gopalakrishnan S, He LD, Huang R, Wang L-S, Castellanos L, Luther DC, Landis RF, Makabenta JMV, Li C-H, Zhang X, Scaletti F, Vachet RW, Rotello VM (2020) Thermally gated bio-orthogonal nanozymes with supramolecularly confined porphyrin catalysts for antimicrobial uses. Chem 6(5): 1113−1124 doi: 10.1016/j.chempr.2020.01.015
    [8]
    Carell T, Vrabel M (2016) Bioorthogonal chemistry-introduction and overview. Top Curr Chem 374(1): 9. https://doi.org/10.1007/s41061-016-0010-x
    [9]
    Carrico IS, Carlson BL, Bertozzi CR (2007) Introducing genetically encoded aldehydes into proteins. Nat Chem Biol 3(6): 321−322 doi: 10.1038/nchembio878
    [10]
    Chatterjee A, Ward TR (2016) Recent advances in the palladium catalyzed Suzuki–Miyaura cross-coupling reaction in water. Catal Lett 146(4): 820−840 doi: 10.1007/s10562-016-1707-8
    [11]
    Chu Y, Oum YH, Carrico IS (2016) Surface modification via strain-promoted click reaction facilitates targeted lentiviral transduction. Virology 487: 95−103 doi: 10.1016/j.virol.2015.09.009
    [12]
    Clavadetscher J, Hoffmann S, Lilienkampf A, Mackay L, Yusop RM, Rider SA, Mullins JJ, Bradley M (2016) Copper catalysis in living systems and in situ drug synthesis. Angew Chem Int Ed 55(50): 15662−15666 doi: 10.1002/anie.201609837
    [13]
    Das R, Landis RF, Tonga GY, Cao-Milan R, Luther DC, Rotello VM (2019) Control of intra-versus extracellular bioorthogonal catalysis using surface-engineered nanozymes. ACS Nano 13(1): 229−235 doi: 10.1021/acsnano.8b05370
    [14]
    Destito P, Sousa-Castillo A, Couceiro JR, López F, Mascareñas JL (2019) Hollow nanoreactors for Pd-catalyzed Suzuki−Miyaura couplings and O-propargyl cleavage reactions in bio-relevant aqueous media. Chem Sci 10(9): 2598−2603 doi: 10.1039/C8SC04390F
    [15]
    Devaraj NK (2018) The future of bioorthogonal chemistry. ACS Cent Sci 4(8): 952−959 doi: 10.1021/acscentsci.8b00251
    [16]
    Dong YS, Tu YL, Wang KW, Xu C, Yuan Y, Wang J (2020) A general strategy for macrotheranostic prodrug activation: synergy between the acidic tumor microenvironment and bioorthogonal chemistry. Angew Chem Int Ed 59(18): 7168−7172 doi: 10.1002/anie.201913522
    [17]
    Eda S, Nasibullin I, Vong K, Kudo N, Yoshida M, Kurbangalieva A, Tanaka K (2019) Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat Catal 2(9): 780−792 doi: 10.1038/s41929-019-0317-4
    [18]
    Ellen M S (2011) From mechanism to mouse: a tale of two bioorthogonal reactions. Acc Chem Res 44(9): 666−676 doi: 10.1021/ar200148z
    [19]
    Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9(6): 2243−2245 doi: 10.1021/nl900186w
    [20]
    Grammel M, Hang HC (2013) Chemical reporters for biological discovery. Nat Chem Biol 9(8): 475−484 doi: 10.1038/nchembio.1296
    [21]
    Gupta A, Das R, Yesilbag Tonga G, Mizuhara T, Rotello VM (2018) Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12(1): 89−94 doi: 10.1021/acsnano.7b07496
    [22]
    Hang HC, Yu C, Kato DL, Bertozzi CR (2003) A metabolic labeling approach toward proteomic analysis of mucin-type O-linked glycosylation. Proc Natl Acad Sci USA 100(25): 14846−14851 doi: 10.1073/pnas.2335201100
    [23]
    Hoop M, Ribeiro AS, Rösch D, Weinand P, Mendes N, Mushtaq F, Chen X-Z, Shen Y, Pujante CF, Puigmartí-Luis J, Paredes J, Nelson BJ, Pêgo AP, Pané S (2018) Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv Funct Mater 28(25): 1705920. https://doi.org/10.1002/adfm.201705920
    [24]
    Jeschek M, Reuter R, Heinisch T, Trindler C, Klehr J, Panke S, Ward TR (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537(7622): 661−665 doi: 10.1038/nature19114
    [25]
    Ji X, Pan Z, Yu B, De La Cruz LK, Zheng Y, Ke B, Wang B (2019) Click and release: bioorthogonal approaches to "on-demand" activation of prodrugs. Chem Soc Rev 48(4): 1077−1094 doi: 10.1039/C8CS00395E
    [26]
    Jiang X, Wang R (2013) Recent developments in catalytic asymmetric inverse-electron-demand Diels–Alder reaction. Chem Rev 113(7): 5515−5546 doi: 10.1021/cr300436a
    [27]
    Kalluri R, LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367(6478): eaau6977. https://doi.org/10.1126/science.aau6977
    [28]
    Kenry, Liu B (2019) Bio-orthogonal click chemistry for in vivo bioimaging. Trends Chem 1(8): 763−778 doi: 10.1016/j.trechm.2019.08.003
    [29]
    Kim J, Bertozzi CR (2015) A bioorthogonal reaction of N-oxide and boron reagents. Angew Chem Int Ed 54(52): 15777−15781 doi: 10.1002/anie.201508861
    [30]
    Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114(9): 4764−4806 doi: 10.1021/cr400355w
    [31]
    Laughlin ST, Baskin JM, Amacher SL, Bertozzi CR (2008) In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320(5876): 664−667 doi: 10.1126/science.1155106
    [32]
    Li B, Liu P, Wu H, Xie X, Chen Z, Zeng F, Wu S (2017) A bioorthogonal nanosystem for imaging and in vivo tumor inhibition. Biomaterials 138: 57−68 doi: 10.1016/j.biomaterials.2017.05.036
    [33]
    Li J, Chen PR (2016) Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat Chem Biol 12(3): 129−137 doi: 10.1038/nchembio.2024
    [34]
    Li Z, Shen D, Hu S, Su T, Huang K, Liu F, Hou L, Cheng K (2018) Pretargeting and bioorthogonal click chemistry-mediated endogenous stem cell homing for heart repair. ACS Nano 12(12): 12193−12200 doi: 10.1021/acsnano.8b05892
    [35]
    Lin YA, Chalker JM, Floyd N, Bernardes GJL, Davis BG (2008) Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification. J Am Chem Soc 130(30): 9642−9643 doi: 10.1021/ja8026168
    [36]
    Ma Y, Wang M, Li W, Zhang Z, Zhang X, Tan T, Zhang XE, Cui Z (2017) Live cell imaging of single genomic loci with quantum dot-labeled TALEs. Nat Commun 8: 15318. https://doi.org/10.1038/ncomms15318
    [37]
    Munoz J, Heck AJ (2014) From the human genome to the human proteome. Angew Chem Int Ed 53(41): 10864−10866 doi: 10.1002/anie.201406545
    [38]
    Nagamune T (2017) Biomolecular engineering for nanobio/bionanotechnology. Nano Converg 4(1): 9. https://doi.org/10.1186/s40580-017-0103-4
    [39]
    Ngo AH, Bose S, Do LH (2018) Intracellular chemistry: integrating molecular inorganic catalysts with living systems. Chemistry 24(42): 10584−10594 doi: 10.1002/chem.201800504
    [40]
    Okamoto Y, Kojima R, Schwizer F, Bartolami E, Heinisch T, Matile S, Fussenegger M, Ward TR (2018) A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell. Nat Commun 9(1): 1943. https://doi.org/10.1038/s41467-018-04440-0
    [41]
    Oliveira BL, Guo Z, Bernardes GJL (2017) Inverse electron demand Diels–Alder reactions in chemical biology. Chem Soc Rev 46(16): 4895−4950 doi: 10.1039/C7CS00184C
    [42]
    Perez-Lopez AM, Rubio-Ruiz B, Sebastian V, Hamilton L, Adam C, Bray TL, Irusta S, Brennan PM, Lloyd-Jones GC, Sieger D, Santamaria J, Unciti-Broceta A (2017) Gold-triggered uncaging chemistry in living systems. Angew Chem Int Ed 56(41): 12548−12552 doi: 10.1002/anie.201705609
    [43]
    Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1(1): 13−21 doi: 10.1038/nchembio0605-13
    [44]
    Prescher JA, Dube DH, Bertozzi CR (2004) Chemical remodelling of cell surfaces in living animals. Nature 430(7002): 873−877 doi: 10.1038/nature02791
    [45]
    Ramil CP, Lin Q (2013) Bioorthogonal chemistry: strategies and recent developments. Chem Commun 49(94): 11007−11022 doi: 10.1039/c3cc44272a
    [46]
    Rebelein JG, Ward TR (2018) In vivo catalyzed new-to-nature reactions. Curr Opin Biotechnol 53: 106−114 doi: 10.1016/j.copbio.2017.12.008
    [47]
    Ritter C, Nett N, Acevedo-Rocha CG, Lonsdale R, Kraling K, Dempwolff F, Hoebenreich S, Graumann PL, Reetz MT, Meggers E (2015) Bioorthogonal enzymatic activation of caged compounds. Angew Chem Int Ed 54(45): 13440−13443 doi: 10.1002/anie.201506739
    [48]
    Sancho-Albero M, Rubio-Ruiz B, Perez-Lopez AM, Sebastian V, Martin-Duque P, Arruebo M, Santamaria J, Unciti-Broceta A (2019) Cancer-derived exosomes loaded with ultrathin palladium nanosheets for targeted bioorthogonal catalysis. Nat Catal 2(10): 864−872 doi: 10.1038/s41929-019-0333-4
    [49]
    Sasmal PK, Streu CN, Meggers E (2013) Metal complex catalysis in living biological systems. Chem Commun 49(16): 1581−1587 doi: 10.1039/C2CC37832A
    [50]
    Saxon E, Bertozzi CR (2000) Cell surface engineering by a modified Staudinger reaction. Science 287(5460): 2007−2010 doi: 10.1126/science.287.5460.2007
    [51]
    Sletten EM, Bertozzi CR (2009) Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 48(38): 6974−6998 doi: 10.1002/anie.200900942
    [52]
    Soto F, Wang J, Ahmed R, Demirci U (2020) Medical micro/nanorobots in precision medicine. Adv Sci . https://doi.org/10.1002/advs.202002203
    [53]
    Szponarski M, Schwizer F, Ward TR, Gademann K (2018) On-cell catalysis by surface engineering of live cells with an artificial metalloenzyme. Communs Chem 1(84): 1−10
    [54]
    Taran F, Porte K, Renoux B, Peraudeau E, Clarhaut J, Eddhif B, Poinot P, Gravel E, Doris E, Wijkhuisen A (2019) Controlled release of micelle payload via sequential enzymatic and bioorthogonal reactions in living systems. Angew Chem Int Ed 58(19): 6366−6370 doi: 10.1002/anie.201902137
    [55]
    Tonga GY, Jeong Y, Duncan B, Mizuhara T, Mout R, Das R, Kim ST, Yeh YC, Yan B, Hou S, Rotello VM (2015) Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts. Nat Chem 7(7): 597−603 doi: 10.1038/nchem.2284
    [56]
    Unciti-Broceta A (2015) Rise of the nanobots. Nat Chem 7(7): 538−539 doi: 10.1038/nchem.2291
    [57]
    Volker T, Meggers E (2015) Transition-metal-mediated uncaging in living human cells — an emerging alternative to photolabile protecting groups. Curr Opin Chem Biol 25: 48−54 doi: 10.1016/j.cbpa.2014.12.021
    [58]
    Vong K, Tanaka K (2020) In vivo metal catalysis in living biological systems. In: Tanaka K and Vong K (eds). Handbook of in vivo chemistry in mice: from lab to living system. Wiley-VCH Verlag GmbH & Co. KgaA, pp309-353. https://doi.org/10.1002/9783527344406.ch11
    [59]
    Wang F, Zhang Y, Du Z, Ren J, Qu X (2018) Designed heterogeneous palladium catalysts for reversible light-controlled bioorthogonal catalysis in living cells. Nat Commun 9(1): 1209. https://doi.org/10.1038/s41467-018-03617-x
    [60]
    Wang J, Cheng B, Li J, Zhang Z, Hong W, Chen X, Chen PR (2015) Chemical remodeling of cell-surface sialic acids through a palladium-triggered bioorthogonal elimination reaction. Angew Chem Int Ed 54(18): 5364−5368 doi: 10.1002/anie.201409145
    [61]
    Wang X, Liu Y, Fan X, Wang J, Ngai WSC, Zhang H, Li J, Zhang G, Lin J, Chen PR (2019) Copper-triggered bioorthogonal cleavage reactions for reversible protein and cell surface modifications. J Am Chem Soc 141(43): 17133−17141 doi: 10.1021/jacs.9b05833
    [62]
    Weiss JT, Dawson JC, Fraser C, Rybski W, Torres-Sanchez C, Bradley M, Patton EE, Carragher NO, Unciti-Broceta A (2014a) Development and bioorthogonal activation of palladium-labile prodrugs of gemcitabine. J Med Chem 57(12): 5395−5404 doi: 10.1021/jm500531z
    [63]
    Weiss JT, Dawson JC, Macleod KG, Rybski W, Fraser C, Torres-Sanchez C, Patton EE, Bradley M, Carragher NO, Unciti-Broceta A (2014b) Extracellular palladium-catalysed dealkylation of 5-fluoro-1-propargyl-uracil as a bioorthogonally activated prodrug approach. Nat Commun 5: 3277. https://doi.org/10.1038/ncomms4277
    [64]
    Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48(4): 1004−1076 doi: 10.1039/C8CS00457A
    [65]
    Wu P, Shui W, Carlson BL, Hu N, Rabuka D, Lee J, Bertozzi CR (2009) Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc Natl Acad Sci USA 106(9): 3000−3005 doi: 10.1073/pnas.0807820106
    [66]
    Xu L, Raabe M, Zegota MM, Nogueira JCF, Chudasama V, Kuan SL, Weil T (2020) Site-selective protein modification via disulfide rebridging for fast tetrazine/trans-cyclooctene bioconjugation. Org Biomol Chem 18(6): 1140−1147 doi: 10.1039/C9OB02687H
    [67]
    Yan T, Li F, Qi S, Tian J, Tian R, Hou J, Luo Q, Dong Z, Xu J, Liu J (2020) Light-responsive vesicles for enantioselective release of chiral drugs prepared from a supra-amphiphilic M-helix. Chem Commun 56(1): 149−152 doi: 10.1039/C9CC08380D
    [68]
    Yao QX, Lin F, Fan XY, Wang Y, Liu Y, Liu Z, Jiang X, Chen PR, Gao Y (2018) Synergistic enzymatic and bioorthogonal reactions for selective prodrug activation in living systems. Nat Commun 9(1): 5032. https://doi.org/10.1038/s41467-018-07490-6
    [69]
    Yarin (2010) Nanofibers, nanofluidics, nanoparticles and nanobots for drug and protein delivery systems. Sci Pharm 78(3): 542−542 doi: 10.3797/scipharm.cespt.8.L02
    [70]
    Yusop RM, Unciti-Broceta A, Johansson EM, Sanchez-Martin RM, Bradley M (2011) Palladium-mediated intracellular chemistry. Nat Chem 3(3): 239−243 doi: 10.1038/nchem.981
    [71]
    Zhang C, Zhou X, Yao T, Tian Z, Zhou D (2018) Precision fluorescent labeling of an adeno-associated virus vector to monitor the viral infection pathway. Biotechnol J 13(4): e1700374. https://doi.org/10.1002/biot.201700374
    [72]
    Zhang G, Zheng S, Liu H, Chen PR (2015) Illuminating biological processes through site-specific protein labeling. Chem Soc Rev 44(11): 3405−3417 doi: 10.1039/C4CS00393D
    [73]
    Zhang X, Liu Y, Gopalakrishnan S, Castellanos-Garcia L, Li G, Malassine M, Uddin I, Huang R, Luther DC, Vachet RW, Rotello VM (2020) Intracellular activation of bioorthogonal nanozymes through endosomal proteolysis of the protein corona. ACS Nano 14(4): 4767−4773 doi: 10.1021/acsnano.0c00629
    [74]
    Zheng M, Zheng L, Zhang P, Li J, Zhang Y (2015) Development of bioorthogonal reactions and their applications in bioconjugation. Molecules 20(2): 3190−3205 doi: 10.3390/molecules20023190
    [75]
    Zheng Y, Ji X, Yu B, Ji K, Gallo D, Csizmadia E, Zhu M, Choudhury MR, De La Cruz LKC, Chittavong V, Pan Z, Yuan Z, Otterbein LE, Wang B (2018) Enrichment-triggered prodrug activation demonstrated through mitochondria-targeted delivery of doxorubicin and carbon monoxide. Nat Chem 10(7): 787−794 doi: 10.1038/s41557-018-0055-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (1325) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return