Volume 7 Issue 1
Feb.  2021
Turn off MathJax
Article Contents
Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen, Yi Wan. A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa[J]. Biophysics Reports, 2021, 7(1): 55-70. doi: 10.52601/bpr.2021.200043
Citation: Lu Wang, Xinhua Qiao, Lei Gao, Chang Chen, Yi Wan. A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa[J]. Biophysics Reports, 2021, 7(1): 55-70. doi: 10.52601/bpr.2021.200043

A quantitative method to assess bacterial adhesion using recombinant bioluminescent Pseudomonas aeruginosa

doi: 10.52601/bpr.2021.200043
Funds:  This work was supported by the Shaanxi Academy of Sciences Project (2020k-26, 2018nk-01), the Foundation of Science and Technology in Shaanxi Province (2020TD-050), and the National Natural Science Foundation of China (31900893).
More Information
  • Corresponding author: changchen@moon.ibp.ac.cn (C. Chen);  wanyi6565@sina.com (Y. Wan)
  • Received Date: 02 September 2020
  • Accepted Date: 13 December 2020
  • Available Online: 20 April 2021
  • Publish Date: 28 February 2021
  • Bioluminescence technology has been widely used in the field of medical detection. The bioluminescent lux reporter system provides a non-invasive platform to monitor bacterial growth and expression in real time. This study aimed to establish a method for detecting bacterial adhesion on the surface of materials, including medical devices, by using recombinant bioluminescent Pseudomonas aeruginosa containing a lux reporter. By monitoring the growth and bioluminescent properties of the recombinant PAO1-lux strain, the optimal test conditions for bacterial adhesion detection in vitro were determined to be as follows: an initial inoculation density of 105 to 106 CFU/mL, M9 medium at a pH 6.2, an adhesion time of 6 h, and the collection of adherent bacteria by ultrasonic cleaning. The traditional CFU counting method and the bioluminescence method were compared, and the applicability of the new method was verified by testing the adhesion of bacteria on the surface of various materials. The validated bioluminescent strains could serve as strong candidates to be used as bacterial detection tools in applications such as bacterial adhesion evaluation as well as supplements and alternatives to traditional microbiological testing procedures. In addition, this method has the potential to enable the study of bacterial adhesion on the surface of inanimate objects and living tissues. With the development of this method and its wide applicability, it is expected to become a standard method for the detection of bacterial adhesion and the screening of anti-adhesion materials.
  • loading
  • [1]
    AlLuhaybi KA, Alghaith GY, Moneib NA, Yassien MA (2015) Generation of recombinant bioluminescent Escherichia coli for quantitative determination of bacterial adhesion. Pak J Pharm Sci 28: 1301−1306
    [2]
    Anderson DJ, Podgorny K, Berrios-Torres SI, Bratzler DW, Dellinger EP, Greene L, Nyquist AC, Saiman L, Yokoe DS, Maragakis LL, Kaye KS (2014) Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35: 605−627 doi: 10.1086/676022
    [3]
    Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16: 397−409 doi: 10.1038/s41579-018-0019-y
    [4]
    Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33: 5967−5982
    [5]
    Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR (2017) In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 9: 28−63
    [6]
    Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hebraud M, Jaglic Z, Kačániová M, Knøchel S, Lourenço A, Mergulhão F, Meyer RL, Nychas G, Simões M, Tresse O, Sternberg C (2017) Critical review on biofilm methods. Crit Rev Microbiol 43: 313−351 doi: 10.1080/1040841X.2016.1208146
    [7]
    Badia JM, Casey AL, Petrosillo N, Hudson PM, Mitchell SA, Crosby C (2017) Impact of surgical site infection on healthcare costs and patient outcomes: a systematic review in six European countries. J Hosp Infect 96: 1−15 doi: 10.1016/j.jhin.2017.03.004
    [8]
    Beilenhoff U, Biering H, Blum R, Brljak J, Cimbro M, Dumonceau JM, Hassan C, Jung M, Neumann C, Pietsch M, Pineau L, Ponchon T, Rejchrt S, Rey J-F, Schmidt V, Tillett J, van Hooft J (2017) Prevention of multidrug-resistant infections from contaminated duodenoscopes: position statement of the European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastroenterology Nurses and Associates (ESGENA). Endoscopy 49: 1098−1106 doi: 10.1055/s-0043-120523
    [9]
    Bruckbauer ST, Kvitko BH, Karkhoff-Schweizer RR, Schweizer HP (2015) Tn5/7-lux: a versatile tool for the identification and capture of promoters in gram-negative bacteria. BMC Microbiol 15: 17. https://doi.org/10.1186/s12866-015-0354-3
    [10]
    Bryers JD (2008) Medical biofilms. Biotechnol Bioeng 100: 1−18 doi: 10.1002/bit.21838
    [11]
    Campoccia D, Visai L, Reno F, Cangini I, Rizzi M, Poggi A, Montanaro L, Rimondini L, Arciola CR (2015) Bacterial adhesion to poly-(D,L)lactic acid blended with vitamin E: toward gentle anti-infective biomaterials. J Biomed Mater Res A 103: 1447−1458 doi: 10.1002/jbm.a.35284
    [12]
    Casey A, Karpanen T, Nightingale P, Cook M, Elliott T (2012) Microbiological comparison of a silver-coated and a non-coated needleless intravascular connector in clinical use. J Hosp Infect 80: 299−303 doi: 10.1016/j.jhin.2012.01.005
    [13]
    Catto C, Cappitelli F (2019) Testing anti-biofilm polymeric surfaces: where to start? Int J Mol Sci 20(15): 3794. https://doi.org/10.3390/ijms20153794
    [14]
    Chen G, Srinivasa Ranga VP, Mao Y, Chen K, Qiao H (2008) Impact of lux gene insertion on bacterial surface properties and transport. Res Microbiol 159: 145−151 doi: 10.1016/j.resmic.2007.11.012
    [15]
    Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51: 1380−1385 doi: 10.1128/AAC.00055-06
    [16]
    Darge A, Kahsay AG, Hailekiros H, Niguse S, Abdulkader M (2019) Bacterial contamination and antimicrobial susceptibility patterns of intensive care units medical equipment and inanimate surfaces at Ayder Comprehensive Specialized Hospital, Mekelle, Northern Ethiopia. BMC Res Notes 12: 621. https://doi.org/10.1186/s13104-019-4658-5
    [17]
    Desrousseaux C, Sautou V, Descamps S, Traore O (2013) Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation. J Hosp Infect 85: 87−93 doi: 10.1016/j.jhin.2013.06.015
    [18]
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167−193 doi: 10.1128/CMR.15.2.167-193.2002
    [19]
    Dostalek P, Branyik T (2018) Prospects for rapid bioluminescent detection methods in the food industry: a review. Czech J Food Sci 23: 85−92
    [20]
    Flemming CA, Lee H, Trevors JT (1994) Bioluminescent most-probable-number method to enumerate lux-marked Pseudomonas aeruginosa UG2Lr in soil. Appl Environ Microbiol 60: 3458−3461 doi: 10.1128/AEM.60.9.3458-3461.1994
    [21]
    Golding GR, Sparling R, Kelly CA (2008) Effect of pH on intracellular accumulation of trace concentrations of Hg(Ⅱ) in Escherichia coli under anaerobic conditions, as measured using a mer-lux bioreporter. Appl Environ Microbiol 74: 667−675 doi: 10.1128/AEM.00717-07
    [22]
    Guglielmetti S, Santala V, Mangayil R, Ciranna A, Karp MT (2019) O2-requiring molecular reporters of gene expression for anaerobic microorganisms. Biosens Bioelectron 123: 1−6 doi: 10.1016/j.bios.2018.09.066
    [23]
    Haney EF, Trimble MJ, Cheng JT, Valle Q, Hancock REW (2018) Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules 8(2): 29. https://doi.org/10.3390/biom8020029
    [24]
    Harber MJ, Mackenzie R, Asscher AW (1983) A rapid bioluminescence method for quantifying bacterial adhesion to polystyrene. J Gen Microbiol 129: 621−632
    [25]
    Hoang TT, Kutchma AJ, Becher A, Schweizer HP (2000) Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43: 59−72 doi: 10.1006/plas.1999.1441
    [26]
    Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods 63: 287−295 doi: 10.1016/j.mimet.2005.03.014
    [27]
    Hook AL, Chang CY, Yang J, Luckett J, Cockayne A, Atkinson S, Mei Y, Bayston R, Irvine DJ, Langer R, Anderson DG, Williams P, Davies MC, Alexander MR (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30: 868−875 doi: 10.1038/nbt.2316
    [28]
    Hsu LC, Fang J, Borca-Tasciuc DA, Worobo RW, Moraru CI (2013) Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol 79: 2703−2712 doi: 10.1128/AEM.03436-12
    [29]
    Ishikawa M, Shigemori K, Suzuki A, Hori K (2012) Evaluation of adhesiveness of Acinetobacter sp. Tol 5 to abiotic surfaces. J Biosci Bioeng 113: 719−725
    [30]
    Johnson JR, Kuskowski MA, Wilt TJ (2006) Systematic review: antimicrobial urinary catheters to prevent catheter-associated urinary tract infection in hospitalized patients. Ann Intern Med 144: 116−126 doi: 10.7326/0003-4819-144-2-200601170-00009
    [31]
    Kadurugamuwa JL, Sin L, Albert E, Yu J, Francis K, DeBoer M, Rubin M, Bellinger-Kawahara C, Parr TR, J r., Contag PR (2003) Direct continuous method for monitoring biofilm infection in a mouse model. Infect Immun 71: 882−890 doi: 10.1128/IAI.71.2.882-890.2003
    [32]
    Kodjikian L, Casoli-Bergeron E, Malet F, Janin-Manificat H, Freney J, Burillon C, Colin J, Steghens JP (2008) Bacterial adhesion to conventional hydrogel and new silicone-hydrogel contact lens materials. Graefes Arch Clin Exp Ophthalmol 246: 267−273 doi: 10.1007/s00417-007-0703-5
    [33]
    Meireles A, Gonçalves AL, Gomes IB, Chaves Simões L, Simões M (2015) Methods to study microbial adhesion on abiotic surfaces. AIMS Bioeng 2: 297−309 doi: 10.3934/bioeng.2015.4.297
    [34]
    Liang H, Li L, Dong Z, Surette MG, Duan K (2008) The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. J Bacteriol 190: 6217−6227 doi: 10.1128/JB.00428-08
    [35]
    Liu J, Li W, Zhu X, Zhao H, Lu Y, Zhang C, Lu Z (2019) Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 103: 4565−4574 doi: 10.1007/s00253-019-09808-w
    [36]
    Lo J, Lange D, Chew BH (2014) Ureteral stents and Foley catheters-associated urinary tract infections: the role of coatings and materials in infection prevention. Antibiotics (Basel) 3: 87−97 doi: 10.3390/antibiotics3010087
    [37]
    Martin KL, An YH (2000) Basic equipment and microbiological techniques for studying bacterial adhesion. In: Handbook of bacterial adhesion: principles, methods, and applications. An YH, Friedman RJ (eds.) pp. 103-120. Humana Press: Totowa, NJ
    [38]
    Mosuela R, Mustafa S, Gould S, Hassanin H, Alany RG, ElShaer A (2018) Adherence of Pseudomonas aeruginosa onto surfactant-laden contact lenses. Colloids Surf B Biointerfaces 163: 91−99 doi: 10.1016/j.colsurfb.2017.12.024
    [39]
    Muñoz-Bonilla A, Fernández-García M (2012) Polymeric materials with antimicrobial activity. Prog Polym Sci 37: 281−339 doi: 10.1016/j.progpolymsci.2011.08.005
    [40]
    Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151−166 doi: 10.1128/MR.60.1.151-166.1996
    [41]
    Neubeiser A, Bonsignore M, Tafelski S, Alefelder C, Schwegmann K, Ruden H, Geffers C, Nachtigall I (2020) Mortality attributable to hospital acquired infections with multidrug-resistant bacteria in a large group of German hospitals. J Infect Public Health 13: 204−210 doi: 10.1016/j.jiph.2019.07.025
    [42]
    Nyhan L, Begley M, Johnson N, Callanan M (2020) An evaluation of Lux technology as an alternative methodology to determine growth rates of Listeria in laboratory media and complex food matrices. Int J Food Microbiol 317: 108442. https://doi.org/10.1016/j.ijfoodmicro.2019.108442
    [43]
    Onaizi SA, Leong SS (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29: 67−74 doi: 10.1016/j.biotechadv.2010.08.012
    [44]
    Pantanella F, Berlutti F, Passeri D, Sordi D, Frioni A, Natalizi T, Terranova ML, Rossi M, Valenti P (2011) Quantitative evaluation of bacteria adherent and in biofilm on single-wall carbon nanotube-coated surfaces. Interdiscip Perspect Infect Dis 2011: 1−9
    [45]
    Park SB, White SB, Steadman CS, Cavinder CA, Willard ST, Ryan PL, Feugang JM (2018) Real-time bioluminescence analysis of Escherichia coli O157:H7 survival on livestock meats stored fresh, cold, or frozen. J Food Prot 81: 1906−1912 doi: 10.4315/0362-028X.JFP-18-207
    [46]
    Phillips-Jones MK (1993) Bioluminescence (lux) expression in the anaerobe Clostridium perfringens. FEMS Microbiol Lett 106: 265−270 doi: 10.1111/j.1574-6968.1993.tb05974.x
    [47]
    Pribaz JR, Bernthal NM, Billi F, Cho JS, Ramos RI, Guo Y, Cheung AL, Francis KP, Miller LS (2012) Mouse model of chronic post-arthroplasty infection: noninvasive in vivo bioluminescence imaging to monitor bacterial burden for long-term study. J Orthop Res 30: 335−340 doi: 10.1002/jor.21519
    [48]
    Robrish SA, Kemp CW, Bowen WH (1978) Use of extractable adenosine triphosphate to estimate the viable cell mass in dental plaque samples obtained from monkeys. Appl Environ Microbiol 35: 743−749 doi: 10.1128/AEM.35.4.743-749.1978
    [49]
    Russotto V, Cortegiani A, Raineri SM, Giarratano A (2015) Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J Intensive Care 3: 54. https://doi.org/10.1186/s40560-015-0120-5
    [50]
    Schweizer HP (1992) Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6: 1195−1204 doi: 10.1111/j.1365-2958.1992.tb01558.x
    [51]
    Serrano C, Garcia-Fernandez L, Fernandez-Blazquez JP, Barbeck M, Ghanaati S, Unger R, Kirkpatrick J, Arzt E, Funk L, Turon P, del Campo A (2015) Nanostructured medical sutures with antibacterial properties. Biomaterials 52: 291−300 doi: 10.1016/j.biomaterials.2015.02.039
    [52]
    Shah N, Naseby DC (2014) Bioluminescence-based measurement of viability of Pseudomonas aeruginosa ATCC 9027 harbouring plasmid-based lux genes under the control of constitutive promoters. J Appl Microbiol 117: 1373−1387 doi: 10.1111/jam.12635
    [53]
    Shah N, Naseby DC (2015) Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens Bioelectron 68: 447−453 doi: 10.1016/j.bios.2015.01.008
    [54]
    Smith RJ, Moule MG, Sule P, Smith T, Cirillo JD, Grunlan JC (2017) Polyelectrolyte multilayer nanocoating dramatically reduces bacterial adhesion to polyester fabric. ACS Biomater Sci Eng 3: 1845−1852 doi: 10.1021/acsbiomaterials.7b00250
    [55]
    Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40: 175−179 doi: 10.1016/S0167-7012(00)00122-6
    [56]
    Stickler D (2002) Susceptibility of antibiotic-resistant Gram-negative bacteria to biocides: a perspective from the study of catheter biofilms. J Appl Microbiol 92: 163S−170S doi: 10.1046/j.1365-2672.92.5s1.6.x
    [57]
    Swartjes JJ, Veeregowda DH (2015) Implications for directionality of nanoscale forces in bacterial attachment. Biophys Rep 1: 120−126 doi: 10.1007/s41048-016-0019-2
    [58]
    Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P (2009) Epidemiology, medical outcomes and costs of catheter-related bloodstream infections in intensive care units of four European countries: literature- and registry-based estimates. J Hosp Infect 72: 97−103 doi: 10.1016/j.jhin.2008.12.012
    [59]
    Thorn RM, Nelson SM, Greenman J (2007) Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob Agents Chemother 51: 3217−3224 doi: 10.1128/AAC.00302-07
    [60]
    Wang L, Chen X, Guo X, Li J, Liu Q, Kang F, Wang X, Hu C, Liu H, Gong W, Zhuang W, Liu X, Wang J (2018a) Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep 4(5): 273−285 doi: 10.1007/s41048-018-0073-z
    [61]
    Wang X, Chi H, Li Q, Li W, Li J, Li B, Gao W, Zhang D, Sun Y, Yi L, Qu H, Wang Y, Li Z, Xia Z (2018b) Influence of antibiotic pressure on five plasmid-based bioluminescent gram-negative bacterial strains. Mol Imaging Biol 20: 21−26 doi: 10.1007/s11307-017-1110-x
    [62]
    Weinstein RA, Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33: 1567−1572 doi: 10.1086/323130
    [63]
    Wilson C, Lukowicz R, Merchant S, Valquier-Flynn H, Caballero J, Sandoval J, Okuom M, Huber C, Brooks TD, Wilson E, Clement B, Wentworth CD, Holmes AE (2017) quantitative and qualitative assessment methods for biofilm growth: a mini-review. Res Rev J Eng Technol 6. http://www.rroij.com/open-access/quantitative-and-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf
    [64]
    Yousuf B, Ahire JJ, Dicks LM (2016) Understanding the antimicrobial activity behind thin- and thick-rolled copper plates. Appl Microbiol Biotechnol 100: 5569−5580 doi: 10.1007/s00253-016-7361-7
    [65]
    Yu K, Lo JC, Yan M, Yang X, Brooks DE, Hancock RE, Lange D, Kizhakkedathu JN (2017) Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials 116: 69−81 doi: 10.1016/j.biomaterials.2016.11.047
    [66]
    Zander ZK, Becker ML (2017) Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett 7: 16−25
    [67]
    Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91: 470−480
  • Supplementary-Materials.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (1148) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return