Supplementary Materials

Supplementary Tables

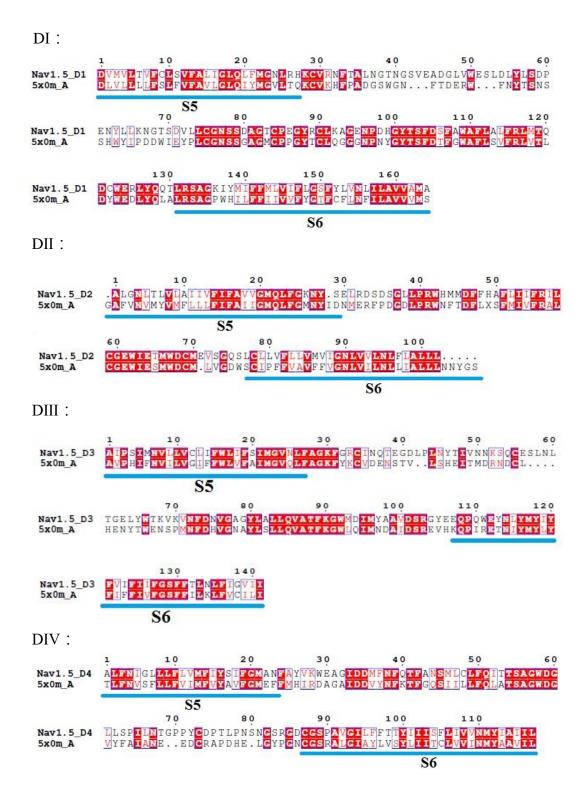
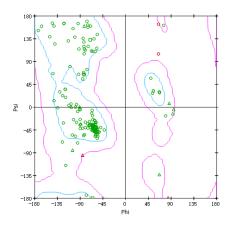
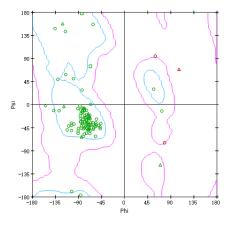
Name	Structure	Sequence No
Na _v Ab	3rvy	3592
Na _v Rh	4dxw	3857
NavPaS	5x0mA	1717
	5x0mB	3536
	5x0mC	3655
	5x0mD	3385
	5x0mAB	431
	5x0mAC	430
	5x0mAD	418
	5x0mBC	430
	5x0mBD	418
	5x0mCD	418
Na _v 1.5	Nav1.5_DI	1939
	Na _v 1.5_DII	3923
	Na _v 1.5_DIII	3390
	Na _v 1.5_DIV	3597
	Na _v 1.5_DI & DII	430
	Nav1.5_DI & DIII	429
	Na _v 1.5_DI & DIV	428
	Na _v 1.5_DII & DIII	429
	Nav1.5_DII & DIV	428
	Nav1.5_DIII & DIV	428

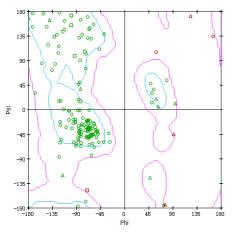
 Table S1 Number of homologous sequences in the multiple sequence alignment

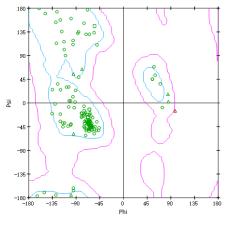
Drugs	$K_{\rm d}$ (µmol/L)	Binding sites	Reference
Pilsicainide	3209	-	[1]
Bisphenol A	25.4 ±1.3	F1760	[2]
Mexiletine	6	-	[3]

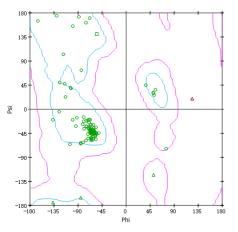
Table S2 Binding affinity and binding sites for closed-state LAs and $Na_V 1.5$

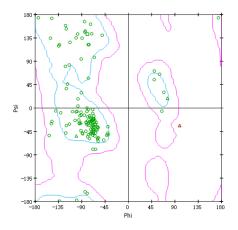
Supplementary Figures

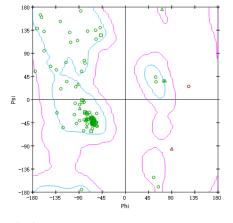




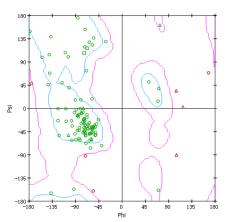

Fig. S1 Sequence alignments between the domains of $Na_v 1.5$ and their templates. S5 and S6 helix in pore domain were shown in blue line at the bottom


(i) Ramachandran plot for closed state model-0177 (DI)

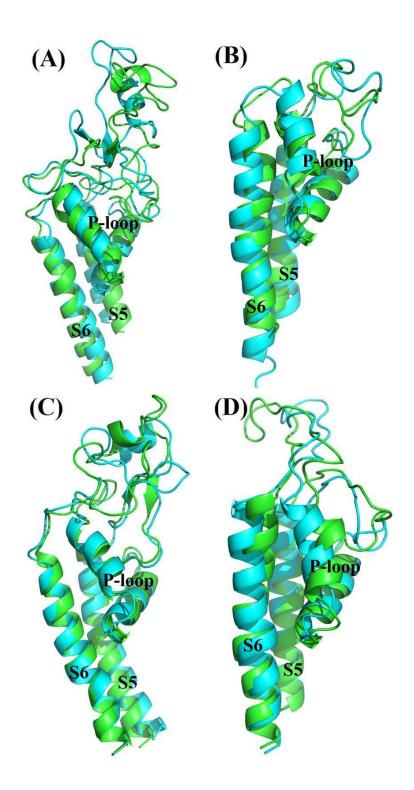

(iv) Ramachandran plot for closed state model-0246 (DII)


(ii) Ramachandran plot for closed state model-0467 (DI)

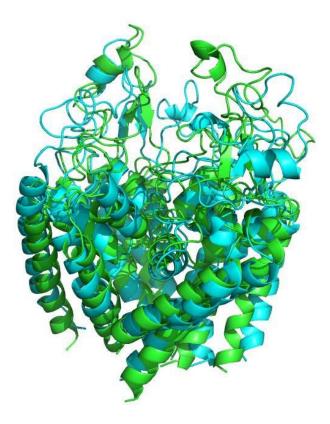

(v) Ramachandran plot for closed state model-0433 (DIII)


(iii) Ramachandran plot for closed state model-0322 (DII)

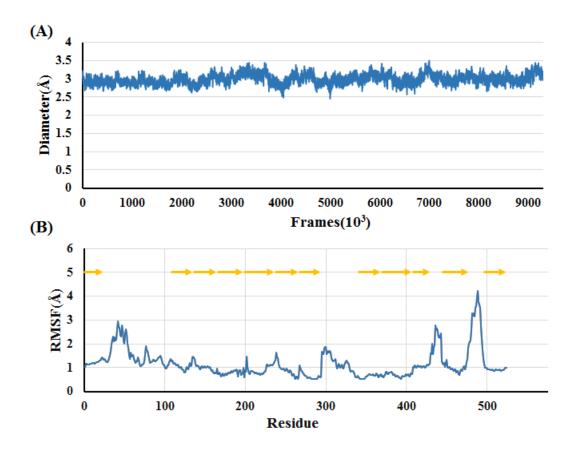
(vi)Ramachandran plot for closed state model-0501 (DIII)



(vii) Ramachandran plot for closed state model-0219 (DIV)



(viii) Ramachandran plot for closed state model-0838 (DIV)


Fig. S2 Ramachandran plots for selected closed-state segments that formed the PD domain of Nav1.5 (i–viii). (i–ii) models-0177 and 0467 of DI; (iii–iv) models-0322 and 0246 of DII; (v–vi) models-0433 and 0501 of DIII; (vii–viii) models-0219 and 0838 of DIV. Residues are shown with hollow circle except Gly and Pro (they are represented as hollow triangle and square, respectively)

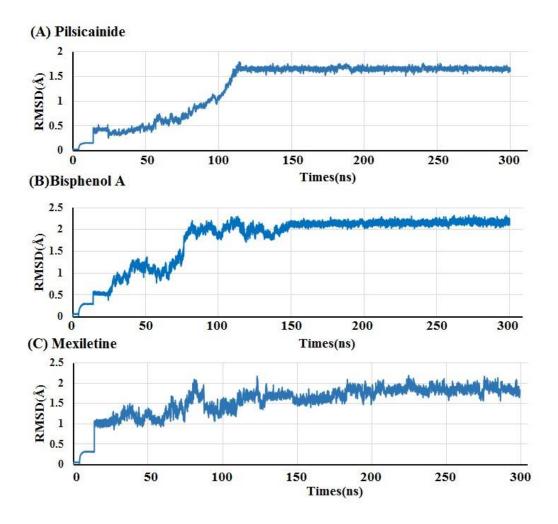

Fig. S3 Structural alignment of the two selected members for each domain. (**A**) DI: 0177 (green) and 0467 (cyan); (**B**) DII: 0322 (green) and 0980 (cyan); (**C**) DIII: 0433 (green) and 0501 (cyan); (**D**) DIV: 0219 (green) and 0838 (cyan). The mainly differences occur in the regions of P-loop

Fig. S4 Structural alignment between the initial model (cyan) and the model after 300 ns MDsimulation (green)

Fig. S5 The diameter fluctuation of the gate region (**A**) and the RMS analysis of the movements (RMSF) in closed10 (**B**). S5, S6 and P-loops in the four domains of closed10 have been shown at the top of **B** in yellow

Fig. S6 Plots of L_RMSD: RMSDs for ligands of Na_V1.5_LAs. (**A**) Pilsicainide, (**B**) Bisphenol A and (**C**) Mexiletine

References:

- [1] Desaphy JF *et al.* (2010) Molecular determinants of state-dependent block of voltage-gated sodium channels by pilsicainide. British Journal of Pharmacology, 160(6): 1521–1533
- [2] O'Reilly AO *et al.* (2012) Bisphenol A binds to the local anesthetic receptor site to block the human cardiac sodium channel. PLoS One, 7(7): e41667
- [3] Moreau A *et al.* (2012) Mexiletine differentially restores the trafficking defects caused by two brugada syndrome mutations. Frontiers in Pharmacology, 3(62): 62