Volume 9 Issue 5
Oct.  2023
Turn off MathJax
Article Contents
Yi Lin, Qiang Cheng, Tuo Wei. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. Biophysics Reports, 2023, 9(5): 255-278. doi: 10.52601/bpr.2023.230022
Citation: Yi Lin, Qiang Cheng, Tuo Wei. Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond. Biophysics Reports, 2023, 9(5): 255-278. doi: 10.52601/bpr.2023.230022

Surface engineering of lipid nanoparticles: targeted nucleic acid delivery and beyond

doi: 10.52601/bpr.2023.230022
More Information
  • Corresponding author: qiangcheng@pku.edu.cn (Q. Cheng); weituo@ioz.ac.cn (T. Wei)
  • Received Date: 19 October 2023
  • Accepted Date: 28 November 2023
  • Available Online: 26 February 2024
  • Publish Date: 01 October 2023
  • Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, we describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. We then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, we comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, we provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the “proof of concept” from the laboratory into the clinic. We believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.

  • Yi Lin, Qiang Cheng, and Tuo Wei declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Akinc A, Querbes W, De S, Qin J, Frank-Kamenetsky M, Jayaprakash KN, Jayaraman M, Rajeev KG, Cantley WL, Dorkin JR, Butler JS, Qin L, Racie T, Sprague A, Fava E, Zeigerer A, Hope MJ, Zerial M, Sah DWY, Fitzgerald K, Tracy MA, Manoharan M, Koteliansky V, Fougerolles Ad, Maier MA (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther 18(7): 1357−1364 doi: 10.1038/mt.2010.85
    Anthiya S, Öztürk SC, Yanik H, Tavukcuoglu E, Şahin A, Datta D, Charisse K, Álvarez DM, Loza MI, Calvo A, Sulheim E, Loevenich S, Klinkenberg G, Schmid R, Manoharan M, Esendağlı G, Alonso MJ (2023) Targeted siRNA lipid nanoparticles for the treatment of KRAS-mutant tumors. J Control Release 357: 67−83 doi: 10.1016/j.jconrel.2023.03.016
    Arnould A, Caputo F, Bacia M, Texier I, Escude M, Boutry D, Auger A, Soulas R, Damlencourt J-F (2018) Contrast enhancement for lipid nanoParticles (LNPs) characterization using transmission electron microscopy (TEM). Microsc Microanal 24(S1): 314−315 doi: 10.1017/S1431927618002064
    Asati S, Pandey V, Soni V (2019) RGD peptide as a targeting moiety for theranostic purpose: an update study. Int J Pept Res Ther 25(1): 49−65 doi: 10.1007/s10989-018-9728-3
    Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nat Mater 2(11): 715−725 doi: 10.1038/nmat1001
    Barenholz Y (2012) Doxil® — The first FDA-approved nano-drug: lessons learned. J Control Release 160(2): 117−134 doi: 10.1016/j.jconrel.2012.03.020
    Belhadj Z, Qie Y, Carney RP, Li Y, Nie G (2023) Current advances in non-viral gene delivery systems: liposomes versus extracellular vesicles. BMEMat 1(2): e12018. https://doi.org/10.1002/bmm2.12018
    Bhattacharjee S (2016) DLS and zeta potential — What they are and what they are not? J Control Release 235: 337-351
    Breda L, Papp TE, Triebwasser MP, Yadegari A, Fedorky MT, Tanaka N, Abdulmalik O, Pavani G, Wang Y, Grupp SA, Chou ST, Ni H, Mui BL, Tam YK, Weissman D, Rivella S, Parhiz H (2023) In vivo hematopoietic stem cell modification by mRNA delivery. Science 381(6656): 436−443 doi: 10.1126/science.ade6967
    Bronte V, Pittet Mikael J (2013) The spleen in local and systemic regulation of immunity. Immunity 39(5): 806−818 doi: 10.1016/j.immuni.2013.10.010
    Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G (2021) Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 6(1): 53−76 doi: 10.1038/s41392-021-00487-6
    Carrasco MJ, Alishetty S, Alameh M-G, Said H, Wright L, Paige M, Soliman O, Weissman D, Cleveland TE, Grishaev A, Buschmann MD (2021) Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun Biol 4(1): 956−970 doi: 10.1038/s42003-021-02441-2
    Casper J, Knauf W, Kiefer T, Wolff D, Steiner B, Hammer U, Wegener R, Kleine H-D, Wilhelm S, Knopp A, Hartung G, Dölken G, Freund M (2004) Treosulfan and fludarabine: a new toxicity-reduced conditioning regimen for allogeneic hematopoietic stem cell transplantation. Blood 103(2): 725−731 doi: 10.1182/blood-2002-11-3615
    Chen J, Tang Y, Liu Y, Dou Y (2018) Nucleic acid-based therapeutics for pulmonary diseases. AAPS PharmSciTech 19(8): 3670−3680 doi: 10.1208/s12249-018-1183-0
    Chen S, Tam YYC, Lin PJC, Sung MMH, Tam YK, Cullis PR (2016) Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J Control Release 235: 236−244 doi: 10.1016/j.jconrel.2016.05.059
    Cheng Q, Wei T, Farbiak L, Johnson LT, Dilliard SA, Siegwart DJ (2020) Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat Nanotechnol 15(4): 313−320 doi: 10.1038/s41565-020-0669-6
    Cheng Q, Wei T, Jia Y, Farbiak L, Zhou K, Zhang S, Wei Y, Zhu H, Siegwart DJ (2018) Dendrimer-based lipid nanoparticles deliver therapeutic FAH mRNA to normalize liver function and extend survival in a mouse model of hepatorenal tyrosinemia type I. Adv Mater 30(52): 1805308−1805317 doi: 10.1002/adma.201805308
    Cohen ZR, Ramishetti S, Peshes-Yaloz N, Goldsmith M, Wohl A, Zibly Z, Peer D (2015) Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano 9(2): 1581−1591 doi: 10.1021/nn506248s
    Conceição M, Mendonça L, Nóbrega C, Gomes C, Costa P, Hirai H, Moreira JN, Lima MC, Manjunath N, Pereira de Almeida L (2016) Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials 82: 124−137 doi: 10.1016/j.biomaterials.2015.12.021
    Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM (2003) Liposomal delivery of antigen to human dendritic cells. Vaccine 21(9): 883−890
    Crick F (1970) Central dogma of molecular biology. Nature 227(5258): 561−563 doi: 10.1038/227561a0
    Cui L, Hunter MR, Sonzini S, Pereira S, Romanelli SM, Liu K, Li W, Liang L, Yang B, Mahmoudi N, Desai AS (2022) Mechanistic studies of an automated lipid nanoparticle reveal critical pharmaceutical properties associated with enhanced mRNA functional delivery in vitro and in vivo. Small 18(9): 2105832−2105850 doi: 10.1002/smll.202105832
    Dammes N, Goldsmith M, Ramishetti S, Dearling JLJ, Veiga N, Packard AB, Peer D (2021) Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat Nanotechnol 16(9): 1030−1038 doi: 10.1038/s41565-021-00928-x
    Dilliard SA, Cheng Q, Siegwart DJ (2021) On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA 118(52): e2109256118. https://doi.org/10.1073/pnas.2109256118
    Dilliard SA, Siegwart DJ (2023) Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater 8(4): 282−300 doi: 10.1038/s41578-022-00529-7
    Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440): 231−235 doi: 10.1038/nature11885
    Ducat E, Evrard B, Peulen O, Piel G (2011) Cellular uptake of liposomes monitored by confocal microscopy and flow cytometry. J Drug Deliv Sci Technol 21(6): 469−477 doi: 10.1016/S1773-2247(11)50076-0
    Eygeris Y, Gupta M, Kim J, Sahay G (2022) Chemistry of lipid nanoparticles for RNA delivery. Acc Chem Res 55(1): 2−12 doi: 10.1021/acs.accounts.1c00544
    Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Adv Drug Deliv Rev 63(3): 136−151 doi: 10.1016/j.addr.2010.04.009
    Farkas N, Kramar JA (2021) Dynamic light scattering distributions by any means. J Nanopart Res 23(5): 120−130 doi: 10.1007/s11051-021-05220-6
    Fekete S, Beck A, Veuthey J-L, Guillarme D (2014) Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 101: 161−173 doi: 10.1016/j.jpba.2014.04.011
    Ferhan AR, Park S, Park H, Tae H, Jackman JA, Cho N-J (2022) Lipid nanoparticle technologies for nucleic acid delivery: a nanoarchitectonics perspective. Adv Funct Mater 32(37): 2203669−2203706 doi: 10.1002/adfm.202203669
    Friedrich H, Frederik PM, de With G, Sommerdijk NAJM (2010) Imaging of self-assembled structures: interpretation of TEM and Cryo-TEM images. Angew Chem Int Ed Engl 49(43): 7850−7858 doi: 10.1002/anie.201001493
    Gál L, Bellák T, Marton A, Fekécs Z, Weissman D, Török D, Biju R, Vizler C, Kristóf R, Beattie MB, Lin PJC, Pardi N, Nógrádi A, Pajer K (2023) Restoration of motor function through delayed intraspinal delivery of human IL-10-encoding nucleoside-modified mRNA after spinal cord injury. Research 6: 0056. https://doi.org/10.34133/research.0056
    Gao M, Tang M, Ho W, Teng Y, Chen Q, Bu L, Xu X, Zhang X-Q (2023) Modulating plaque inflammation via targeted mRNA nanoparticles for the treatment of atherosclerosis. ACS Nano 17(18): 17721−17739 doi: 10.1021/acsnano.3c00958
    Gautam M, Jozic A, Su GL-N, Herrera-Barrera M, Curtis A, Arrizabalaga S, Tschetter W, Ryals RC, Sahay G (2023) Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina. Nature Communications 14(1): 6468. https://doi.org/10.1038/s41467-023-42189-3
    Goswami R, Chatzikleanthous D, Lou G, Giusti F, Bonci A, Taccone M, Brazzoli M, Gallorini S, Ferlenghi I, Berti F, O’Hagan DT, Pergola C, Baudner BC, Adamo R (2019) Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS Infect Dis 5(9): 1546−1558 doi: 10.1021/acsinfecdis.9b00084
    Goswami R, O’Hagan DT, Adamo R, Baudner BC (2021) Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines. Pharmaceutics 13(2): 240−252 doi: 10.3390/pharmaceutics13020240
    Guo S, Li K, Hu B, Li C, Zhang M, Hussain A, Wang X, Cheng Q, Yang F, Ge K, Zhang J, Chang J, Liang X-J, Weng Y, Huang Y (2021) Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration 1(1): 35−49 doi: 10.1002/EXP.20210008
    Hammel M, Fan Y, Sarode A, Byrnes AE, Zang N, Kou P, Nagapudi K, Leung D, Hoogenraad CC, Chen T, Yen C-W, Hura GL (2023) Correlating the structure and gene silencing activity of oligonucleotide-loaded lipid nanoparticles using small-angle X-ray scattering. ACS Nano 17(12): 11454−11465 doi: 10.1021/acsnano.3c01186
    Han X, Gong N, Xue L, Billingsley MM, El-Mayta R, Shepherd SJ, Alameh M-G, Weissman D, Mitchell MJ (2023) Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis. Nat Commun 14(1): 75−86 doi: 10.1038/s41467-022-35637-z
    Hatzimichael E, Tuthill M (2010) Hematopoietic stem cell transplantation. Stem Cells Cloning 3: 105−117
    He Y, Bi D, Plantinga JA, Molema G, Bussmann J, Kamps JAAM (2022) Development of a combined lipid-based nanoparticle formulation for enhanced siRNA delivery to vascular endothelial cells. Pharmaceutics 14(10): 2086−2101 doi: 10.3390/pharmaceutics14102086
    Henley MJ, Koehler AN (2021) Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat Rev Drug Discov 20(9): 669−688 doi: 10.1038/s41573-021-00199-0
    Herrera-Barrera M, Ryals RC, Gautam M, Jozic A, Landry M, Korzun T, Gupta M, Acosta C, Stoddard J, Reynaga R, Tschetter W, Jacomino N, Taratula O, Sun C, Lauer AK, Neuringer M, Sahay G (2023) Peptide-guided lipid nanoparticles deliver mRNA to the neural retina of rodents and nonhuman primates. Sci Adv 9(2): eadd4623. https://doi.org/10.1126/sciadv.add4623
    Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6(2): 155−176 doi: 10.1016/j.molonc.2012.02.004
    Hole P, Sillence K, Hannell C, Maguire CM, Roesslein M, Suarez G, Capracotta S, Magdolenova Z, Horev-Azaria L, Dybowska A, Cooke L, Haase A, Contal S, Manø S, Vennemann A, Sauvain J-J, Staunton KC, Anguissola S, Luch A, Dusinska M, Korenstein R, Gutleb AC, Wiemann M, Prina-Mello A, Riediker M, Wick P (2013) Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J Nanopart Res 15(12): 2101−2112 doi: 10.1007/s11051-013-2101-8
    Ibraheem D, Elaissari A, Fessi H (2014) Gene therapy and DNA delivery systems. Int J Pharm 459(1): 70−83
    Inoue H, Akimoto K, Homma T, Tanaka A, Sagara H (2020) Airway epithelial dysfunction in asthma: relevant to epidermal growth factor receptors and airway epithelial cells. J Clin Med 9(11): 3698
    Ishida T, Iden DL, Allen TM (1999) A combinatorial approach to producing sterically stabilized (Stealth) immunoliposomal drugs. FEBS Lett 460(1): 129−133 doi: 10.1016/S0014-5793(99)01320-4
    James AE, Driskell JD (2013) Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst 138(4): 1212−1218 doi: 10.1039/c2an36467k
    Jia N, Patrick MG, Sahily R-E, Helene CD, Vladimir VS, Raisa YK, Tyler EP, Mohamad-Gabriel A, Ying KT, Barbara LM, Serena O-L, Marco EZ, Tea S, Evguenia A, Christoph AT, Jacob WM, Drew W, Scott EK, Hamideh P, Vladimir RM, Jacob SB, Oscar AM-C (2023) Targeting lipid nanoparticles to the blood brain barrier to ameliorate acute ischemic stroke. bioRxiv, 10.1101/2023.06. 12.544645: 2023.2006. 2012.544645
    Jia Z, Gong Y, Pi Y, Liu X, Gao L, Kang L, Wang J, Yang F, Tang J, Lu W, Li Q, Zhang W, Yan Z, Yu L (2018) pPB peptide-mediated siRNA-loaded stable nucleic acid lipid nanoparticles on targeting therapy of hepatic fibrosis. Mol Pharm 15(1): 53−62 doi: 10.1021/acs.molpharmaceut.7b00709
    Jin H, Jeong M, Lee G, Kim M, Yoo Y, Kim HJ, Cho J, Lee Y-S, Lee H (2023) Engineered lipid nanoparticles for the treatment of pulmonary fibrosis by regulating epithelial-mesenchymal transition in the lungs. Adv Funct Mater 33(7): 2209432−2209444 doi: 10.1002/adfm.202209432
    Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB (2015) The role of CD44 in disease pathophysiology and targeted treatment. Front Immunol 6:182. https://doi.org/10.3389/fimmu.2015.00182
    Kampel L, Goldsmith M, Ramishetti S, Veiga N, Rosenblum D, Gutkin A, Chatterjee S, Penn M, Lerman G, Peer D, Muhanna N (2021) Therapeutic inhibitory RNA in head and neck cancer via functional targeted lipid nanoparticles. J Control Release 337: 378−389 doi: 10.1016/j.jconrel.2021.07.034
    Kasiewicz LN, Biswas S, Beach A, Ren H, Dutta C, Mazzola AM, Rohde E, Chadwick A, Cheng C, Garcia SP, Iyer S, Matsumoto Y, Khera AV, Musunuru K, Kathiresan S, Malyala P, Rajeev KG, Bellinger AM (2023) GalNAc-lipid nanoparticles enable non-LDLR dependent hepatic delivery of a CRISPR base editing therapy. Nat Commun 14(1): 2776−2785 doi: 10.1038/s41467-023-37465-1
    Katakowski JA, Mukherjee G, Wilner SE, Maier KE, Harrison MT, DiLorenzo TP, Levy M, Palliser D (2016) Delivery of siRNAs to dendritic cells using DEC205-targeted lipid nanoparticles to inhibit immune responses. Mol Ther 24(1): 146−155 doi: 10.1038/mt.2015.175
    Kedmi R, Veiga N, Ramishetti S, Goldsmith M, Rosenblum D, Dammes N, Hazan-Halevy I, Nahary L, Leviatan-Ben-Arye S, Harlev M, Behlke M, Benhar I, Lieberman J, Peer D (2018) A modular platform for targeted RNAi therapeutics. Nat Nanotechnol 13(3): 214−219 doi: 10.1038/s41565-017-0043-5
    Kon E, Ad-El N, Hazan-Halevy I, Stotsky-Oterin L, Peer D (2023) Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nat Rev Clin Oncol 20(11): 739−754 doi: 10.1038/s41571-023-00811-9
    Kruger NJ (2009) The bradford method for protein quantitation. The Protein Protocols Handbook 17-24
    Kubczak M, Michlewska S, Bryszewska M, Aigner A, Ionov M (2021) Nanoparticles for local delivery of siRNA in lung therapy. Adv Drug Deliv Rev 179: 114038−114056 doi: 10.1016/j.addr.2021.114038
    Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L (2022) mRNA nanomedicine: design and recent applications. Exploration 2(6): 20210217. https://doi.org/10.1002/EXP.20210217
    Kulkarni JA, Darjuan MM, Mercer JE, Chen S, van der Meel R, Thewalt JL, Tam YYC, Cullis PR (2018) On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12(5): 4787−4795 doi: 10.1021/acsnano.8b01516
    Lächelt U, Wagner E (2015) Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem Rev 115(19): 11043−11078 doi: 10.1021/cr5006793
    Lam JKW, Chow MYT, Zhang Y, Leung SWS (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4: e252. https://doi.org/10.1038/mtna.2015.23
    Lavrador P, Gaspar VM, Mano JF (2018) Stimuli-responsive nanocarriers for delivery of bone therapeutics — Barriers and progresses. J Control Release 273: 51−67 doi: 10.1016/j.jconrel.2018.01.021
    Lee JB, Zhang K, Tam YYC, Quick J, Tam YK, Lin PJC, Chen S, Liu Y, Nair JK, Zlatev I, Rajeev KG, Manoharan M, Rennie PS, Cullis PR (2016) A Glu-urea-Lys ligand-conjugated lipid nanoparticle/siRNA system inhibits androgen receptor expression in vivo. Mol Ther Nucleic Acids 5: e348. https://doi.org/10.1038/mtna.2016.43
    Lee K, Kim SY, Seo Y, Kim MH, Chang J, Lee H (2020) Adjuvant incorporated lipid nanoparticles for enhanced mRNA-mediated cancer immunotherapy. Biomater Sci 8(4): 1101−1105 doi: 10.1039/C9BM01564G
    Lewis SM, Williams A, Eisenbarth SC (2019) Structure and function of the immune system in the spleen. Sci Immunol 4(33): eaau6085. https://doi.org/10.1126/sciimmunol.aau6085
    Li J, Ghatak S, El Masry MS, Das A, Liu Y, Roy S, Lee RJ, Sen CK (2018) Topical lyophilized targeted lipid nanoparticles in the restoration of skin barrier function following burn wound. Mol Ther 26(9): 2178−2188 doi: 10.1016/j.ymthe.2018.04.021
    Li Q, Chan C, Peterson N, Hanna RN, Alfaro A, Allen KL, Wu H, Dall’Acqua WF, Borrok MJ, Santos JL (2020) Engineering caveolae-targeted lipid nanoparticles to deliver mRNA to the lungs. ACS Chem Biol 15(4): 830−836 doi: 10.1021/acschembio.0c00003
    Li T, Senesi AJ, Lee B (2016) Small angle X-ray scattering for nanoparticle research. Chem Rev 116(18): 11128−11180 doi: 10.1021/acs.chemrev.5b00690
    Liang C, Guo B, Wu H, Shao N, Li D, Liu J, Dang L, Wang C, Li H, Li S, Lau WK, Cao Y, Yang Z, Lu C, He X, Au DWT, Pan X, Zhang B-T, Lu C, Zhang H, Yue K, Qian A, Shang P, Xu J, Xiao L, Bian Z, Tan W, Liang Z, He F, Zhang L, Lu A, Zhang G (2015) Aptamer-functionalized lipid nanoparticles targeting osteoblasts as a novel RNA interference–based bone anabolic strategy. Nat Med 21(3): 288−294 doi: 10.1038/nm.3791
    Lin L, Su K, Cheng Q, Liu S (2023) Targeting materials and strategies for RNA delivery. Theranostics 13(13): 4667−4693 doi: 10.7150/thno.87316
    Lin Y, Wagner E, Lächelt U (2022) Non-viral delivery of the CRISPR/Cas system: DNA versus RNA versus RNP. Biomater Sci 10(5): 1166−1192 doi: 10.1039/D1BM01658J
    Liu S, Cheng Q, Wei T, Yu X, Johnson LT, Farbiak L, Siegwart DJ (2021) Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat Mater 20(5): 701−710 doi: 10.1038/s41563-020-00886-0
    Lombardo D, Calandra P, Kiselev MA (2020) Structural characterization of biomaterials by means of small angle X-rays and neutron scattering (SAXS and SANS), and light scattering experiments. Molecules 25(23): 5624−5660 doi: 10.3390/molecules25235624
    Malvano R, Boniolo A, Dovis M, Zannino M (1982) Elisa for antibody measurement: aspects related to data expression. J Immunol Methods 48(1): 51−60 doi: 10.1016/0022-1759(82)90209-5
    McKinnon KM (2018) Flow cytometry: an overview. Curr Protoc Immunol 120(1): 5.1.1−5.1.11
    Melamed JR, Yerneni SS, Arral ML, LoPresti ST, Chaudhary N, Sehrawat A, Muramatsu H, Alameh M-G, Pardi N, Weissman D, Gittes GK, Whitehead KA (2023) Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. Sci Adv 9(4): eade1444. https://doi.org/10.1126/sciadv.ade1444
    Morandi F, Horenstein AL, Costa F, Giuliani N, Pistoia V, Malavasi F (2018) CD38: a target for immunotherapeutic approaches in multiple myeloma. Front Immunol 9:2722. https://doi.org/10.3389/fimmu.2018.02722
    Nahar UJ, Toth I, Skwarczynski M (2022) Mannose in vaccine delivery. J Control Release 351: 284−300 doi: 10.1016/j.jconrel.2022.09.038
    Nakamura T, Sato Y, Yamada Y, Abd Elwakil MM, Kimura S, Younis MA, Harashima H (2022) Extrahepatic targeting of lipid nanoparticles in vivo with intracellular targeting for future nanomedicines. Adv Drug Deliv Rev 188: 114417−114436 doi: 10.1016/j.addr.2022.114417
    Nogueira SS, Schlegel A, Maxeiner K, Weber B, Barz M, Schroer MA, Blanchet CE, Svergun DI, Ramishetti S, Peer D, Langguth P, Sahin U, Haas H (2020) Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Appl Nano Mater 3(11): 10634−10645 doi: 10.1021/acsanm.0c01834
    Nothnagel L, Wacker MG (2018) How to measure release from nanosized carriers? Eur J Pharm Sci 120: 199-211
    Otzen D (2011) Protein–surfactant interactions: a tale of many states. Biochim Biophys Acta Proteins Proteom 1814(5): 562−591 doi: 10.1016/j.bbapap.2011.03.003
    Pardridge WM (2007) Blood–brain barrier delivery. Drug Discov Today 12(1): 54−61
    Parhiz H, Shuvaev VV, Pardi N, Khoshnejad M, Kiseleva RY, Brenner JS, Uhler T, Tuyishime S, Mui BL, Tam YK, Madden TD, Hope MJ, Weissman D, Muzykantov VR (2018) PECAM-1 directed re-targeting of exogenous mRNA providing two orders of magnitude enhancement of vascular delivery and expression in lungs independent of apolipoprotein E-mediated uptake. J Control Release 291: 106−115 doi: 10.1016/j.jconrel.2018.10.015
    Patil TS, Deshpande AS (2020) Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: a state of the art review. J Control Release 320: 239−252 doi: 10.1016/j.jconrel.2020.01.046
    Pecora R (2000) Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res 2(2): 123−131 doi: 10.1023/A:1010067107182
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2): 346−356
    Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3): 191−285 doi: 10.1017/S0033583507004635
    Ramishetti S, Hazan-Halevy I, Palakuri R, Chatterjee S, Naidu Gonna S, Dammes N, Freilich I, Kolik Shmuel L, Danino D, Peer D (2020) A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv Mater 32(12): 1906128. https://doi.org/10.1002/adma.201906128
    Ramishetti S, Kedmi R, Goldsmith M, Leonard F, Sprague AG, Godin B, Gozin M, Cullis PR, Dykxhoorn DM, Peer D (2015) Systemic gene silencing in primary T lymphocytes using targeted lipid nanoparticles. ACS Nano 9(7): 6706−6716 doi: 10.1021/acsnano.5b02796
    Rosenblum D, Gutkin A, Kedmi R, Ramishetti S, Veiga N, Jacobi AM, Schubert MS, Friedmann-Morvinski D, Cohen ZR, Behlke MA, Lieberman J, Peer D (2020) CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Sci Adv 6(47): eabc9450. https://doi.org/10.1126/sciadv.abc9450
    Rurik JG, Tombácz I, Yadegari A, Méndez Fernández PO, Shewale SV, Li L, Kimura T, Soliman OY, Papp TE, Tam YK, Mui BL, Albelda SM, Puré E, June CH, Aghajanian H, Weissman D, Parhiz H, Epstein JA (2022) CAR T cells produced in vivo to treat cardiac injury. Science 375(6576): 91−96 doi: 10.1126/science.abm0594
    Sakurai Y, Abe N, Yoshikawa K, Oyama R, Ogasawara S, Murata T, Nakai Y, Tange K, Tanaka H, Akita H (2022) Targeted delivery of lipid nanoparticle to lymphatic endothelial cells via anti-podoplanin antibody. J Control Release 349: 379−387 doi: 10.1016/j.jconrel.2022.06.052
    Sakurai Y, Hada T, Kato A, Hagino Y, Mizumura W, Harashima H (2018) Effective therapy using a liposomal siRNA that targets the tumor vasculature in a model murine breast cancer with lung metastasis. Mol Ther Oncolytics 11: 102−108 doi: 10.1016/j.omto.2018.10.004
    Sakurai Y, Hada T, Yamamoto S, Kato A, Mizumura W, Harashima H (2016) Remodeling of the extracellular matrix by endothelial cell-targeting siRNA improves the EPR-based delivery of 100 nm particles. Mol Ther 24(12): 2090−2099 doi: 10.1038/mt.2016.178
    Sakurai Y, Mizumura W, Ito K, Iwasaki K, Katoh T, Goto Y, Suga H, Harashima H (2020) Improved stability of siRNA-loaded lipid nanoparticles prepared with a PEG-monoacyl fatty acid facilitates ligand-mediated siRNA delivery. Mol Pharm 17(4): 1397−1404 doi: 10.1021/acs.molpharmaceut.0c00087
    Sakurai Y, Mizumura W, Murata M, Hada T, Yamamoto S, Ito K, Iwasaki K, Katoh T, Goto Y, Takagi A, Kohara M, Suga H, Harashima H (2017) Efficient siRNA delivery by lipid nanoparticles modified with a nonstandard macrocyclic peptide for EpCAM-targeting. Mol Pharm 14(10): 3290−3298 doi: 10.1021/acs.molpharmaceut.7b00362
    Sanghani A, Kafetzis KN, Sato Y, Elboraie S, Fajardo-Sanchez J, Harashima H, Tagalakis AD, Yu-Wai-Man C (2021) Novel PEGylated lipid nanoparticles have a high encapsulation efficiency and effectively deliver MRTF-B siRNA in conjunctival fibroblasts. Pharmaceutics 13(3): 382. https://doi.org/10.3390/pharmaceutics13030382
    Sato Y, Matsui H, Yamamoto N, Sato R, Munakata T, Kohara M, Harashima H (2017) Highly specific delivery of siRNA to hepatocytes circumvents endothelial cell-mediated lipid nanoparticle-associated toxicity leading to the safe and efficacious decrease in the hepatitis B virus. J Control Release 266: 216−225 doi: 10.1016/j.jconrel.2017.09.044
    Schneiderman E, Stalcup AM (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B Biomed Sci Appl 745(1): 83−102 doi: 10.1016/S0378-4347(00)00057-8
    Sessler JL, Lawrence CM, Jayawickramarajah J (2007) Molecular recognition via base-pairing. Chem Soc Rev 36(2): 314−325 doi: 10.1039/B604119C
    Shanmuga Doss S, Bhatt NP, Jayaraman G (2017) Improving the accuracy of hyaluronic acid molecular weight estimation by conventional size exclusion chromatography. J Chromatogr B 1060: 255−261 doi: 10.1016/j.jchromb.2017.06.006
    Shi D, Toyonaga S, Anderson DG (2023) In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett 23(7): 2938−2944 doi: 10.1021/acs.nanolett.3c00304
    Sinegra AJ, Evangelopoulos M, Park J, Huang Z, Mirkin CA (2021) Lipid nanoparticle spherical nucleic acids for intracellular DNA and RNA delivery. Nano Lett 21(15): 6584−6591 doi: 10.1021/acs.nanolett.1c01973
    Singh MS, Ramishetti S, Landesman-Milo D, Goldsmith M, Chatterjee S, Palakuri R, Peer D (2021) Therapeutic gene silencing using targeted lipid nanoparticles in metastatic ovarian cancer. Small 17(19): 2100287. https://doi.org/10.1002/smll.202100287
    Smith DF, Virginia Torres B (1989) Lectin affinity chromatography of glycolipids and glycolipid-derived oligosaccharides. Academic Press 179: 30−45
    Stordy B, Zhang Y, Sepahi Z, Khatami MH, Kim PM, Chan WCW (2022) Conjugating ligands to an equilibrated nanoparticle protein corona enables cell targeting in serum. Chem Mater 34(15): 6868−6882 doi: 10.1021/acs.chemmater.2c01168
    Su F-Y, Zhao QH, Dahotre SN, Gamboa L, Bawage SS, Silva Trenkle AD, Zamat A, Phuengkham H, Ahmed R, Santangelo PJ, Kwong GA (2022) In vivo mRNA delivery to virus-specific T cells by light-induced ligand exchange of MHC class I antigen-presenting nanoparticles. Sci Adv 8(8): eabm7950. https://doi.org/10.1126/sciadv.abm7950
    Tarab-Ravski D, Hazan-Halevy I, Goldsmith M, Stotsky-Oterin L, Breier D, Naidu GS, Aitha A, Diesendruck Y, Ng BD, Barsheshet H, Berger T, Vaxman I, Raanani P, Peer D (2023) Delivery of therapeutic RNA to the bone marrow in multiple myeloma using CD38-targeted lipid nanoparticles. Adv Sci 10(21): 2301377. https://doi.org/10.1002/advs.202301377
    Tateshita N, Miura N, Tanaka H, Masuda T, Ohtsuki S, Tange K, Nakai Y, Yoshioka H, Akita H (2019) Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. J Control Release 310: 36−46 doi: 10.1016/j.jconrel.2019.08.002
    Tian Y, Li M, Yang Y, Li C, Peng Y, Yang H, Zhao M, Wu P, Ruan S, Huang Y, Shen C, Yang M (2023) An MPXV mRNA-LNP vaccine candidate elicits protective immune responses against monkeypox virus. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2023.109270:109270
    Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8(23-24): 4886−4897 doi: 10.1002/pmic.200800298
    Timur SS, Gürsoy RN (2021) The role of peptide-based therapeutics in oncotherapy. J Drug Target 29(10): 1048−1062 doi: 10.1080/1061186X.2021.1906884
    Tombácz I, Laczkó D, Shahnawaz H, Muramatsu H, Natesan A, Yadegari A, Papp TE, Alameh M-G, Shuvaev V, Mui BL, Tam YK, Muzykantov V, Pardi N, Weissman D, Parhiz H (2021) Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol Ther 29(11): 3293−3304 doi: 10.1016/j.ymthe.2021.06.004
    Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3): 131−135 doi: 10.1016/j.addr.2010.03.011
    Valetti S, Mura S, Noiray M, Arpicco S, Dosio F, Vergnaud J, Desmaële D, Stella B, Couvreur P (2014) Peptide conjugation: before or after nanoparticle formation? Bioconjug Chem 25(11): 1971-1983
    Veiga N, Diesendruck Y, Peer D (2023) Targeted nanomedicine: lessons learned and future directions. J Control Release 355: 446−457 doi: 10.1016/j.jconrel.2023.02.010
    Walker JM (2009) The Bicinchoninic Acid (BCA) Assay for Protein Quantitation. Humana Press 11-15
    Wang F, Lou J, Gao X, Zhang L, Sun F, Wang Z, Ji T, Qin Z (2023a) Spleen-targeted nanosystems for immunomodulation. Nano Today 52: 101943−101962 doi: 10.1016/j.nantod.2023.101943
    Wang Q, Jiang Q, Li D, Yang Z, Gao L, Liu F, Li C, Feng Y, He Z, Luo C, Sun J (2023b) Elaborately engineering of lipid nanoparticle for targeting delivery of siRNA and suppressing acute liver injury. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2023.108683:108683
    Wang T, Bai J, Jiang X, Nienhaus GU (2012) Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6(2): 1251−1259 doi: 10.1021/nn203892h
    Wang X, Liu S, Sun Y, Yu X, Lee SM, Cheng Q, Wei T, Gong J, Robinson J, Zhang D, Lian X, Basak P, Siegwart DJ (2023c) Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat Protoc 18(1): 265−291 doi: 10.1038/s41596-022-00755-x
    Wei T, Tao W, Cheng Q (2022) Lipid nanoparticles for mRNA therapy: recent advances in targeted delivery. Life Med 1(1): 21−23 doi: 10.1093/lifemedi/lnac004
    Weinstein S, Toker IA, Emmanuel R, Ramishetti S, Hazan-Halevy I, Rosenblum D, Goldsmith M, Abraham A, Benjamini O, Bairey O, Raanani P, Nagler A, Lieberman J, Peer D (2016) Harnessing RNAi-based nanomedicines for therapeutic gene silencing in B-cell malignancies. Proc Natl Acad Sci USA 113(1): E16−E22
    Wilhelmy C, Keil IS, Uebbing L, Schroer MA, Franke D, Nawroth T, Barz M, Sahin U, Haas H, Diken M, Langguth P (2023) Polysarcosine-functionalized mRNA lipid nanoparticles tailored for immunotherapy. Pharmaceutics 15(8): 2068. https://doi.org/10.3390/pharmaceutics15082068
    Williams LR (2001) Staining nucleic acids and proteins in electrophoresis gels. Biotech Histochem 76(3): 127−132 doi: 10.1080/bih.76.3.127.132
    Wilson SC, Baryza JL, Reynolds AJ, Bowman K, Keegan ME, Standley SM, Gardner NP, Parmar P, Agir VO, Yadav S, Zunic A, Vargeese C, Lee CC, Rajan S (2015) Real time measurement of PEG shedding from lipid nanoparticles in serum via NMR spectroscopy. Mol Pharm 12(2): 386−392 doi: 10.1021/mp500400k
    Xiao Y, Chen J, Zhou H, Zeng X, Ruan Z, Pu Z, Jiang X, Matsui A, Zhu L, Amoozgar Z, Chen DS, Han X, Duda DG, Shi J (2022) Combining p53 mRNA nanotherapy with immune checkpoint blockade reprograms the immune microenvironment for effective cancer therapy. Nat Commun 13(1): 758−771 doi: 10.1038/s41467-022-28279-8
    Xiao Y, Shi J (2021) Lipids and the emerging RNA medicines. Chem Rev 121(20): 12109−12111 doi: 10.1021/acs.chemrev.1c00778
    Xue L, Gong N, Shepherd SJ, Xiong X, Liao X, Han X, Zhao G, Song C, Huang X, Zhang H, Padilla MS, Qin J, Shi Y, Alameh M-G, Pochan DJ, Wang K, Long F, Weissman D, Mitchell MJ (2022) Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J Am Chem Soc 144(22): 9926−9937 doi: 10.1021/jacs.2c02706
    Ye H, Desai A, Zeng D, Nomie K, Romaguera J, Ahmed M, Wang ML (2017) Smoldering mantle cell lymphoma. J Exp Clin Cancer Res 36(1): 185−194 doi: 10.1186/s13046-017-0652-8
    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8): 541−555 doi: 10.1038/nrg3763
    Yong S-B, Ramishetti S, Goldsmith M, Diesendruck Y, Hazan-Halevy I, Chatterjee S, Somu Naidu G, Ezra A, Peer D (2022) Dual-targeted lipid nanotherapeutic boost for chemo-immunotherapy of cancer. Adv Mater 34(13): 2106350−2106362 doi: 10.1002/adma.202106350
    Zhang J, Shen H, Xu J, Liu L, Tan J, Li M, Xu N, Luo S, Wang J, Yang F, Tang J, Li Q, Wang Y, Yu L, Yan Z (2020) Liver-targeted siRNA lipid nanoparticles treat hepatic cirrhosis by dual antifibrotic and anti-inflammatory activities. ACS Nano 14(5): 6305−6322 doi: 10.1021/acsnano.0c02633
    Zhang M, Jiang H, Wu L, Lu H, Bera H, Zhao X, Guo X, Liu X, Cun D, Yang M (2022) Airway epithelial cell-specific delivery of lipid nanoparticles loading siRNA for asthma treatment. J Control Release 352: 422−437 doi: 10.1016/j.jconrel.2022.10.020
    Zhou J-e, Sun L, Jia Y, Wang Z, Luo T, Tan J, Fang X, Zhu H, Wang J, Yu L, Yan Z (2022) Lipid nanoparticles produce chimeric antigen receptor T cells with interleukin-6 knockdown in vivo. J Control Release 350: 298−307 doi: 10.1016/j.jconrel.2022.08.033
    Zhu X, Tao W, Liu D, Wu J, Guo Z, Ji X, Bharwani Z, Zhao L, Zhao X, Farokhzad OC, Shi J (2017) Surface de-PEGylation controls nanoparticle-mediated siRNA delivery in vitro and in vivo. Theranostics 7(7): 1990−2002 doi: 10.7150/thno.18136
    Zong Y, Lin Y, Wei T, Cheng Q (2023) Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy. Adv Mater 35(51): e2303261. https://doi.org/10.1002/adma.202303261
  • Supplemental tables.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (557) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return