Volume 9 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Junjun Liu, Chuanmao Zhang. Xenopus cell-free extracts and their applications in cell biology study. Biophysics Reports, 2023, 9(4): 195-205. doi: 10.52601/bpr.2023.230016
Citation: Junjun Liu, Chuanmao Zhang. Xenopus cell-free extracts and their applications in cell biology study. Biophysics Reports, 2023, 9(4): 195-205. doi: 10.52601/bpr.2023.230016

Xenopus cell-free extracts and their applications in cell biology study

doi: 10.52601/bpr.2023.230016
More Information
  • Corresponding author: zhangcm@kust.edu.cn or zhangcm@pku.edu.cn (C. Zhang)
  • Received Date: 27 September 2023
  • Accepted Date: 05 December 2023
  • Available Online: 26 February 2024
  • Publish Date: 31 August 2023
  • Xenopus has proven to be a remarkably versatile model organism in the realm of biological research for numerous years, owing to its straightforward maintenance in laboratory settings and its abundant provision of ample-sized oocytes, eggs, and embryos. The cell cycle of these oocytes, eggs, and early embryos exhibits synchrony, and extracts derived from these cells serve various research purposes. Many fundamental concepts in biochemistry, cell biology, and development have been elucidated through the use of cell-free extracts derived from Xenopus cells. Over the past few decades, a wide array of cell-free extracts has been prepared from oocytes, eggs, and early embryos of different Xenopus species at varying cell cycle stages. Each of these extracts possesses distinct characteristics. This review provides a concise overview of the Xenopus species employed in laboratory research, the diverse types of cell-free extracts available, and their respective properties. Furthermore, this review delves into the extensive investigation of spindle assembly in Xenopus egg extracts, underscoring the versatility and potency of these cell-free systems in the realm of cell biology.

  • Junjun Liu and Chuanmao Zhang declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Amaya E, Offield MF, Grainger RM (1998) Frog genetics: Xenopus tropicalis jumps into the future. Trends Genet 14(7): 253−255 doi: 10.1016/S0168-9525(98)01506-6
    Benbow RM, Ford CC (1975) Cytoplasmic control of nuclear DNA synthesis during early development of Xenopus laevis: a cell-free assay. Proc Natl Acad Sci USA 72(6): 2437−2441 doi: 10.1073/pnas.72.6.2437
    Bier E, De Robertis EM (2015) Embryo development. BMP gradients:a paradigm for morphogen-mediated developmental patterning. Science 348(6242): aaa5838. https://doi.org/10.1126/science.aaa5838
    Blachon S, Khire A, Avidor-Reiss T (2014) The origin of the second centriole in the zygote of Drosophila melanogaster. Genetics 197(1): 199−205 doi: 10.1534/genetics.113.160523
    Blow JJ, Laskey RA (1986) Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47(4): 577−587 doi: 10.1016/0092-8674(86)90622-7
    Brown DD, Dawid IB, Reeder RH (1977) Xenopus borealis misidentified as Xenopus mulleri. Dev Biol 59(2): 266−267 doi: 10.1016/0012-1606(77)90263-9
    Brown DD, Sugimoto K (1974) The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri. Cold Spring Harb Symp Quant Biol 38: 501−505 doi: 10.1101/SQB.1974.038.01.054
    Brown DD, Wensink PC, Jordan E (1972) A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol 63(1): 57−73 doi: 10.1016/0022-2836(72)90521-9
    Brown KS, Blower MD, Maresca TJ, Grammer TC, Harland RM, Heald R (2007) Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J Cell Biol 176(6): 765−770 doi: 10.1083/jcb.200610043
    Chen P, Levy DL (2018) Nucleus assembly and import in Xenopus laevis egg extract. Cold Spring Harb Protoc 2018(6): prot097196. https://doi.org/10.1101/pdbprot097196
    Cheng X, Ferrell JE Jr. (2019) Spontaneous emergence of cell-like organization in Xenopus egg extracts. Science 366(6465): 631−637 doi: 10.1126/science.aav7793
    Crane RF, Ruderman JV (2006) Using Xenopus oocyte extracts to study signal transduction. Methods Mol Biol 322: 435−443
    Cruciat CM, Niehrs C (2013) Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5(3): a015081. https://doi.org/10.1101/cshperspect.a015081
    De Robertis EM, Larrain J, Oelgeschlager M, Wessely O (2000) The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 1(3): 171−181 doi: 10.1038/35042039
    Dinarina A, Pugieux C, Corral MM, Loose M, Spatz J, Karsenti E, Nedelec F (2009) Chromatin shapes the mitotic spindle. Cell 138(3): 502−513 doi: 10.1016/j.cell.2009.05.027
    Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136(2): 153−179
    Elkan ER (1938) The Xenopus pregnancy test. Br Med J 2(4067): 1253−1274 doi: 10.1136/bmj.2.4067.1253
    Felix MA, Antony C, Wright M, Maro B (1994) Centrosome assembly in vitro: role of gamma-tubulin recruitment in Xenopus sperm aster formation. J Cell Biol 124(1-2): 19−31
    Field CM, Mitchison TJ (2018) Assembly of spindles and asters in Xenopus egg extracts. Cold Spring Harb Protoc 2018(6): prot099796. https://doi.org/10.1101/pdb.prot099796
    Fowler A, Toner M (2005) Cryo-injury and biopreservation. Ann N Y Acad Sci 1066: 119−135
    Gandini-Attardi D, Martini G, Mattoccia E, Tocchini-Valentini GP (1976) Effect of Xenopus laevis oocyte extract on supercoiled simian virus 40 DNA: formation of complex DNA. Proc Natl Acad Sci USA 73(2): 554−558 doi: 10.1073/pnas.73.2.554
    Gillespie PJ, Gambus A, Blow JJ (2012) Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 57(2): 203−213 doi: 10.1016/j.ymeth.2012.03.029
    Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305): 132−138 doi: 10.1038/349132a0
    Good MC (2016) Encapsulation of Xenopus egg and embryo extract spindle assembly reactions in synthetic cell-like compartments with tunable size. Methods Mol Biol 1413: 87−108
    Good MC, Heald R (2018) Preparation of cellular extracts from Xenopus eggs and embryos. Cold Spring Harb Protoc 2018(6): prot097055. https://doi.org/10.1101/pdb.prot097055
    Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science 342(6160): 856−860 doi: 10.1126/science.1243147
    Grenfell AW, Strzelecka M, Crowder ME, Helmke KJ, Schlaitz AL, Heald R (2016) A versatile multivariate image analysis pipeline reveals features of Xenopus extract spindles. J Cell Biol 213(1): 127−136 doi: 10.1083/jcb.201509079
    Griswold MD, Brown RD, Tocchini-Valentini GP (1974) An analysis of the degree of homology between 28S rRNA from Xenopus laevis and Xenopus mulleri. Biochem Biophys Res Commun 58(4): 1093−1103 doi: 10.1016/S0006-291X(74)80256-1
    Hannak E, Heald R (2006) Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts. Nat Protoc 1(5): 2305−2314 doi: 10.1038/nprot.2006.396
    Harland RM, Grainger RM (2011) Xenopus research: metamorphosed by genetics and genomics. Trends Genet 27(12): 507−515 doi: 10.1016/j.tig.2011.08.003
    Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K, Oakey J, Gatlin JC (2013) Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342(6160): 853−856 doi: 10.1126/science.1243110
    Hazel JW, Gatlin JC (2018) Isolation and demembranation of Xenopus sperm nuclei. Cold Spring Harb Protoc 2018(6): prot099044. https://doi.org/10.1101/pdb.prot099044
    Heald R, Tournebize R, Blank T, Sandaltzopoulos R, Becker P, Hyman A, Karsenti E (1996) Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382(6590): 420−425 doi: 10.1038/382420a0
    Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 328(5978): 633−636 doi: 10.1126/science.1183670
    Huang CY, Ferrell JE Jr. (1996) Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system. EMBO J 15(9): 2169−2173 doi: 10.1002/j.1460-2075.1996.tb00570.x
    Hutchison CJ, Cox R, Drepaul RS, Gomperts M, Ford CC (1987) Periodic DNA synthesis in cell-free extracts of Xenopus eggs. EMBO J 6(7): 2003−2010 doi: 10.1002/j.1460-2075.1987.tb02464.x
    Iwabuchi M, Ohsumi K, Yamamoto TM, Sawada W, Kishimoto T (2000) Residual Cdc2 activity remaining at meiosis I exit is essential for meiotic M-M transition in Xenopus oocyte extracts. EMBO J 19(17): 4513−4523 doi: 10.1093/emboj/19.17.4513
    Kitaoka M, Heald R, Gibeaux R (2018) Spindle assembly in egg extracts of the Marsabit clawed frog, Xenopus borealis. Cytoskeleton (Hoboken) 75(6): 244−257 doi: 10.1002/cm.21444
    Leno GH, Downes CS, Laskey RA (1992) The nuclear membrane prevents replication of human G2 nuclei but not G1 nuclei in Xenopus egg extract. Cell 69(1): 151−158 doi: 10.1016/0092-8674(92)90126-W
    Levy DL, Heald R (2010) Nuclear size is regulated by importin alpha and Ntf2 in Xenopus. Cell 143(2): 288−298 doi: 10.1016/j.cell.2010.09.012
    Liu J, Lewellyn AL, Chen LG, Maller JL (2004) The polo box is required for multiple functions of Plx1 in mitosis. J Biol Chem 279(20): 21367−21373 doi: 10.1074/jbc.M400482200
    Liu J, Maller JL (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 15(16): 1458−1468 doi: 10.1016/j.cub.2005.07.030
    Lohka MJ, Maller JL (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J Cell Biol 101(2): 518−523 doi: 10.1083/jcb.101.2.518
    Lohka MJ, Masui Y (1983a) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220(4598): 719−721 doi: 10.1126/science.6601299
    Lohka MJ, Masui Y (1983b) The germinal vesicle material required for sperm pronuclear formation is located in the soluble fraction of egg cytoplasm. Exp Cell Res 148(2): 481−491 doi: 10.1016/0014-4827(83)90169-6
    Masui Y, Clarke HJ (1979) Oocyte maturation. Int Rev Cytol 57: 185−282
    Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177(2): 129−145 doi: 10.1002/jez.1401770202
    Miyamoto K, Simpson D, Gurdon JB (2015) Manipulation and in vitro maturation of Xenopus laevis oocytes, followed by intracytoplasmic sperm injection, to study embryonic development. J Vis Exp 96: e52496. https://doi.org/10.3791/52496
    Murray AW (1991) Cell cycle extracts. Methods Cell Biol 36: 581−605
    Murray AW, Kirschner MW (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339(6222): 275−280 doi: 10.1038/339275a0
    Ohsumi K, Sawada W, Kishimoto T (1994) Meiosis-specific cell cycle regulation in maturing Xenopus oocytes. J Cell Sci 107 ( Pt 11): 3005−3013
    Ohsumi K, Yamamoto TM, Iwabuchi M (2006) Oocyte extracts for the study of meiotic M-M transition. Methods Mol Biol 322: 445−458
    Philpott A, Yew PR (2008) The Xenopus cell cycle: an overview. Mol Biotechnol 39(1): 9−19 doi: 10.1007/s12033-008-9033-z
    Qian YW, Erikson E, Taieb FE, Maller JL (2001) The polo-like kinase Plx1 is required for activation of the phosphatase Cdc25C and cyclin B-Cdc2 in Xenopus oocytes. Mol Biol Cell 12(6): 1791−1799 doi: 10.1091/mbc.12.6.1791
    Sato KI, Tokmakov AA (2020) Toward the understanding of biology of oocyte life cycle in Xenopus Laevis: no oocytes left behind. Reprod Med Biol 19(2): 114−119 doi: 10.1002/rmb2.12314
    Sawin KE, Mitchison TJ (1991) Mitotic spindle assembly by two different pathways in vitro. J Cell Biol 112(5): 925−940 doi: 10.1083/jcb.112.5.925
    Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625): 336−343 doi: 10.1038/nature19840
    Shibuya EK, Polverino AJ, Chang E, Wigler M, Ruderman JV (1992) Oncogenic ras triggers the activation of 42-kDa mitogen-activated protein kinase in extracts of quiescent Xenopus oocytes. Proc Natl Acad Sci USA 89(20): 9831−9835 doi: 10.1073/pnas.89.20.9831
    Smith LD (1989) The induction of oocyte maturation: transmembrane signaling events and regulation of the cell cycle. Development 107(4): 685−699 doi: 10.1242/dev.107.4.685
    Takagi J, Shimamoto Y (2017) High-quality frozen extracts of Xenopus laevis eggs reveal size-dependent control of metaphase spindle micromechanics. Mol Biol Cell 28(16): 2170−2177 doi: 10.1091/mbc.e17-03-0174
    Townsley FM, Aristarkhov A, Beck S, Hershko A, Ruderman JV (1997) Dominant-negative cyclin-selective ubiquitin carrier protein E2-C/UbcH10 blocks cells in metaphase. Proc Natl Acad Sci USA 94(6): 2362−2367 doi: 10.1073/pnas.94.6.2362
    Tunquist BJ, Schwab MS, Chen LG, Maller JL (2002) The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 12(12): 1027−1033 doi: 10.1016/S0960-9822(02)00894-1
    VanRenterghem B, Browning MD, Maller JL (1994) Regulation of mitogen-activated protein kinase activation by protein kinases A and C in a cell-free system. J Biol Chem 269(40): 24666−24672 doi: 10.1016/S0021-9258(17)31442-4
    Wang S, Romano FB, Field CM, Mitchison TJ, Rapoport TA (2013) Multiple mechanisms determine ER network morphology during the cell cycle in Xenopus egg extracts. J Cell Biol 203(5): 801−814 doi: 10.1083/jcb.201308001
    Wang S, Romano FB, Rapoport TA (2019) Endoplasmic reticulum network formation with Xenopus egg extracts. Cold Spring Harb Protoc 2019(2): prot097204. https://doi.org/10.1101/pdb.prot097204
    Wellauer PK, Reeder RH (1975) A comparison of the structural organization of amplified ribosomal DNA from Xenopus mulleri and Xenopus laevis. J Mol Biol 94(2): 151−161 doi: 10.1016/0022-2836(75)90074-1
    Wignall SM, Heald R (2001) Methods for the study of centrosome-independent spindle assembly in Xenopus extracts. Methods Cell Biol 67: 241−256
    Wilbur JD, Heald R (2013) Mitotic spindle scaling during Xenopus development by kif2a and importin alpha. Elife 2: e00290. https://doi.org/10.7554/eLife.00290
    Wuhr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchison TJ (2008) Evidence for an upper limit to mitotic spindle length. Curr Biol 18(16): 1256−1261 doi: 10.1016/j.cub.2008.07.092
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (204) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return