Volume 9 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
Xianxin Ye, Minzhu Guan, Yaorong Guo, Xiang Liu, Kunhao Wang, Tongsheng Chen, Shiqun Zhao, Liangyi Chen. Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes. Biophysics Reports, 2023, 9(4): 206-214. doi: 10.52601/bpr.2023.230010
Citation: Xianxin Ye, Minzhu Guan, Yaorong Guo, Xiang Liu, Kunhao Wang, Tongsheng Chen, Shiqun Zhao, Liangyi Chen. Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes. Biophysics Reports, 2023, 9(4): 206-214. doi: 10.52601/bpr.2023.230010

Live-cell super-resolution imaging unconventional dynamics and assemblies of nuclear pore complexes

doi: 10.52601/bpr.2023.230010
More Information
  • Super-resolution microscopy has promoted the development of cell biology, but imaging proteins with low copy numbers in cellular structures remains challenging. The limited number of designated proteins within nuclear pore complexes (NPCs) impedes continuous observation in live cells, although they are often used as a standard for evaluating various SR methods. To address this issue, we tagged POM121 with Halo-SiR and imaged it using structured illumination microscopy with sparse deconvolution (Sparse-SIM). Remarkably, POM121-SiR exhibited more than six-fold fluorescence intensity and four-fold enhanced contrast compared to the same protein labeled with tandem-linked mCherry, while showing negligible photo-bleaching during SR imaging for 200 frames. Using this technique, we discovered various types of NPCs, including ring-like and cluster-like structures, and observed dynamic remodeling along with the sequential appearance of different Nup compositions. Overall, Halo-SiR with Sparse-SIM is a potent tool for extended SR imaging of dynamic structures of NPCs in live cells, and it may also help visualize proteins with limited numbers in general.

  • Xianxin Ye, Minzhu Guan,Yaorong Guo, Xiang Liu, Kunhao Wang, Tongsheng Chen, Shiqun Zhao and Liangyi Chen declare that they have no conflict of interests.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Allegretti M, Zimmerli CE, Rantos V, Wilfling F, Ronchi P, Fung HKH, Lee CW, Hagen W, Turonova B, Karius K, Bormel M, Zhang X, Muller CW, Schwab Y, Mahamid J, Pfander B, Kosinski J, Beck M (2020) In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 586(7831): 796−800 doi: 10.1038/s41586-020-2670-5
    Bottanelli F, Kromann EB, Allgeyer ES, Erdmann RS, Wood Baguley S, Sirinakis G, Schepartz A, Baddeley D, Toomre DK, Rothman JE, Bewersdorf J (2016) Two-colour live-cell nanoscale imaging of intracellular targets. Nat Commun 7: 10778. https://doi.org/10.1038/ncomms10778
    Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andres-Pons A, Glavy JS, Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155(6): 1233−1243 doi: 10.1016/j.cell.2013.10.055
    Chou YY, Upadhyayula S, Houser J, He K, Skillern W, Scanavachi G, Dang S, Sanyal A, Ohashi KG, Di Caprio G, Kreutzberger AJB, Vadakkan TJ, Kirchhausen T (2021) Inherited nuclear pore substructures template post-mitotic pore assembly. Dev Cell 56(12): 1786−1803 doi: 10.1016/j.devcel.2021.05.015
    Culley S, Albrecht D, Jacobs C, Pereira PM, Leterrier C, Mercer J, Henriques R (2018) Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nat Methods 15(4): 263−266 doi: 10.1038/nmeth.4605
    Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154(1): 71−84 doi: 10.1083/jcb.200101089
    Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12): 1027−1036 doi: 10.1038/nmeth.1768
    Doucet CM, Talamas JA, Hetzer MW (2010) Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 141(6): 1030−1041 doi: 10.1016/j.cell.2010.04.036
    Dultz E, Ellenberg J (2010) Live imaging of single nuclear pores reveals unique assembly kinetics and mechanism in interphase. J Cell Biol 191(1): 15−22 doi: 10.1083/jcb.201007076
    Dultz E, Zanin E, Wurzenberger C, Braun M, Rabut Gnl, Sironi L, Ellenberg J (2008) Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol 180(5): 857−865 doi: 10.1083/jcb.200707026
    Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6: 7532. https://doi.org/10.1038/ncomms8532
    Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12): 929−943 doi: 10.1038/nrm2531
    Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106 ( Pt 1): 261-274
    Gottfert F, Wurm CA, Mueller V, Berning S, Cordes VC, Honigmann A, Hell SW (2013) Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution. Biophys J 105(1): L01−03 doi: 10.1016/j.bpj.2013.05.029
    Gu L, Ji W (2021) Recent progress on single-molecule localization microscopy. Biophysics Reports 7(5): 365−376 doi: 10.52601/bpr.2021.210023
    Hinner MJ, Johnsson K (2010) How to obtain labeled proteins and what to do with them. Curr Opin Biotechnol 21(6): 766−776 doi: 10.1016/j.copbio.2010.09.011
    Hirano M, Ando R, Shimozono S, Sugiyama M, Takeda N, Kurokawa H, Deguchi R, Endo K, Haga K, Takai-Todaka R, Inaura S, Matsumura Y, Hama H, Okada Y, Fujiwara T, Morimoto T, Katayama K, Miyawaki A (2022) A highly photostable and bright green fluorescent protein. Nat Biotechnol 40(7): 1132−1142 doi: 10.1038/s41587-022-01278-2
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6): 373−382 doi: 10.1021/cb800025k
    Loschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125(Pt 3): 570-575
    Lü Q, Zhang C, Westlake Christopher J (2021) Live-cell fluorescence imaging of ciliary dynamics. Biophys Rep 7(2): 101−110 doi: 10.52601/bpr.2021.210005
    Nofrini V, Di Giacomo D, Mecucci C (2016) Nucleoporin genes in human diseases. Eur J Hum Genet 24(10): 1388−1395 doi: 10.1038/ejhg.2016.25
    Otsuka S, Ellenberg J (2018) Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine. FEBS Lett 592(4): 475−488 doi: 10.1002/1873-3468.12905
    Otsuka S, Tempkin JOB, Zhang W, Politi AZ, Rybina A, Hossain MJ, Kueblbeck M, Callegari A, Koch B, Morero NR, Sali A, Ellenberg J (2023) A quantitative map of nuclear pore assembly reveals two distinct mechanisms. Nature 613(7944): 575−581 doi: 10.1038/s41586-022-05528-w
    Ptak C, Aitchison JD, Wozniak RW (2014) The multifunctional nuclear pore complex: a platform for controlling gene expression. Curr Opin Cell Biol 28: 46−53 doi: 10.1016/j.ceb.2014.02.001
    Rabut G, Doye V, Ellenberg J (2004) Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat Cell Biol 6(11): 1114−1121 doi: 10.1038/ncb1184
    Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK, Cuesta-Dominguez A, Kim RS, Rodriguez-Fernandez I, Li P, Gordon R, Hirschfield H, Prats JM, Reddy EP, Fatatis A, Petrylak DP, Gomella L, Kelly WK, Lowe SW, Knudsen KE, Galsky MD, Cingolani G, Lujambio A, Hoshida Y, Domingo-Domenech J (2018) Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 174(5): 1200−1215 doi: 10.1016/j.cell.2018.07.015
    Sabinina VJ, Hossain MJ, Hériché JK, Hoess P, Nijmeijer B, Mosalaganti S, Kueblbeck M, Callegari A, Szymborska A, Beck M, Ries J, Ellenberg J (2021) Three-dimensional superresolution fluorescence microscopy maps the variable molecular architecture of the nuclear pore complex. Mol Biol Cell 32(17): 1523−1533 doi: 10.1091/mbc.E20-11-0728
    Sakuma S, D'Angelo MA (2017) The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 68: 72−84 doi: 10.1016/j.semcdb.2017.05.006
    Sellés J, Penrad-Mobayed M, Guillaume C, Fuger A, Auvray L, Faklaris O, Montel F (2017) Nuclear pore complex plasticity during developmental process as revealed by super-resolution microscopy. Sci Rep 7(1): 14732. https://doi.org/10.1038/s41598-017-15433-2
    Strambio-De-Castillia C, Niepel M, Rout MP (2010) The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol 11(7): 490−501
    Sun J, Shi Y, Yildirim E (2019) The Nuclear Pore Complex in Cell Type-Specific Chromatin Structure and Gene Regulation. Trends Genet 35(8): 579−588 doi: 10.1016/j.tig.2019.05.006
    Thevathasan JV, Kahnwald M, Cieslinski K, Hoess P, Peneti SK, Reitberger M, Heid D, Kasuba KC, Hoerner SJ, Li Y, Wu YL, Mund M, Matti U, Pereira PM, Henriques R, Nijmeijer B, Kueblbeck M, Sabinina VJ, Ellenberg J, Ries J (2019) Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat Methods 16(10): 1045−1053 doi: 10.1038/s41592-019-0574-9
    Uno SN, Kamiya M, Yoshihara T, Sugawara K, Okabe K, Tarhan MC, Fujita H, Funatsu T, Okada Y, Tobita S, Urano Y (2014) A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 6(8): 681−689 doi: 10.1038/nchem.2002
    Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y (2015) A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 64(4): 263−277
    Whytock S, Moir RD, Stewart M (1990) Selective digestion of nuclear envelopes from Xenopus oocyte germinal vesicles: possible structural role for the nuclear lamina. J Cell Sci 97 ( Pt 3): 571-580
    Yang T, Luo Y, Ji W, Yang G (2021) Advancing biological super-resolution microscopy through deep learning: a brief review. Biophys Rep 7(4): 253−266
    Zhang H, Shao S, Sun Y (2022) Characterization of liquid–liquid phase separation using super-resolution and single-molecule imaging. Biophys Rep 8(1): 2−13 doi: 10.52601/bpr.2022.210043
    Zhao W, Zhao S, Li L, Huang X, Xing S, Zhang Y, Qiu G, Han Z, Shang Y, Sun DE, Shan C, Wu R, Gu L, Zhang S, Chen R, Xiao J, Mo Y, Wang J, Ji W, Chen X, Ding B, Liu Y, Mao H, Song BL, Tan J, Liu J, Li H, Chen L (2022) Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nat Biotechnol 40(4): 606−617 doi: 10.1038/s41587-021-01092-2
  • Supplementary materials.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (453) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return