Volume 9 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
Jianshu Dong, Dié Li, Lei Kang, Chenbing Luo, Jiangyun Wang. Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds. Biophysics Reports, 2023, 9(3): 159-175. doi: 10.52601/bpr.2023.210045
Citation: Jianshu Dong, Dié Li, Lei Kang, Chenbing Luo, Jiangyun Wang. Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds. Biophysics Reports, 2023, 9(3): 159-175. doi: 10.52601/bpr.2023.210045

Insights into human eNOS, nNOS and iNOS structures and medicinal indications from statistical analyses of their interactions with bound compounds

doi: 10.52601/bpr.2023.210045
More Information
  • Corresponding author: jdong@zzu.edu.cn (J. Dong)
  • Received Date: 25 October 2021
  • Accepted Date: 18 May 2023
  • Available Online: 03 November 2023
  • Publish Date: 01 June 2023
  • 83 Structures of human nNOS, 55 structures of human eNOS, 13 structures of iNOS, and about 126 reported NOS-bound compounds are summarized and analyzed. Structural and statistical analysis show that, at least one copy of each analyzed compound binds to the active site (the substrate arginine binding site) of human NOS. And binding features of the three isoforms show differences, but the binding preference of compounds is not in the way helpful for inhibitor design targeting nNOS and iNOS, or for activator design targeting eNOS. This research shows that there is a strong structural and functional similarity between oxygenase domains of human NOS isoforms, especially the architecture, residue composition, size, shape, and distribution profile of hydrophobicity, polarity and charge of the active site. The selectivity and efficacy of inhibitors over the rest of isoforms rely a lot on chance and randomness. Further increase of selectivity via rational improvement is uncertain, unpredictable and unreliable, therefore, to achieve high selectivity through targeting this site is complicated and requires combinative investigation. After analysis on the current two targeting sites in NOS, the highly conserved arginine binding pocket and H4B binding pocket, new potential drug-targeting sites are proposed based on structure and sequence profiling. This comprehensive analysis on the structure and interaction profiles of human NOS and bound compounds provides fresh insights for drug discovery and pharmacological research, and the new discovery here is practically applied to guide protein-structure based drug discovery.

  • Jianshu Dong, Lei Kang, Dié Li, Chenbing Luo and Jiangyun Wang declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by the any of the authors.

  • loading
  • Adak S, Wang Q, Stuehr DJ (2000) Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase. Implications for mechanism. J Biol Chem 275(43): 33554−33561
    Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357(Pt 3): 593-615
    Aoyagi M, Arvai AS, Tainer JA, Getzoff ED (2003) Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 22(4): 766−775 doi: 10.1093/emboj/cdg078
    Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2008) Role of nitric oxide synthases in Parkinson's disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem Res 33(12): 2416−2426 doi: 10.1007/s11064-008-9697-6
    Bian K, Murad F (2003) Nitric oxide (NO)-biogeneration, regulation, and relevance to human diseases. Front Biosci 8: d264−278 doi: 10.2741/997
    Bushmarina NA, Blanchet CE, Vernier G, Forge V (2006) Cofactor effects on the protein folding reaction: acceleration of alpha-lactalbumin refolding by metal ions. Protein Sci 15(4): 659−671 doi: 10.1110/ps.051904206
    Cinelli MA, Do HT, Miley GP, Silverman RB (2020a) Inducible nitric oxide synthase: regulation, structure, and inhibition. Med Res Rev 40(1): 158−189 doi: 10.1002/med.21599
    Cinelli MA, Li H, Chreifi G, Poulos TL, Silverman RB (2017) Nitrile in the Hole: discovery of a small auxiliary pocket in neuronal nitric oxide synthase leading to the development of potent and selective 2-aminoquinoline inhibitors. J Med Chem 60(9): 3958−3978 doi: 10.1021/acs.jmedchem.7b00259
    Cinelli MA, Li H, Pensa AV, Kang S, Roman LJ, Martasek P, Poulos TL, Silverman RB (2015) Phenyl ether- and aniline-containing 2-aminoquinolines as potent and selective inhibitors of neuronal nitric oxide synthase. J Med Chem 58(21): 8694−8712 doi: 10.1021/acs.jmedchem.5b01330
    Cinelli MA, Reidl CT, Li H, Chreifi G, Poulos TL, Silverman RB (2020b) First contact: 7-phenyl-2-aminoquinolines, potent and selective neuronal nitric oxide synthase inhibitors that target an isoform-specific aspartate. J Med Chem 63(9): 4528−4554 doi: 10.1021/acs.jmedchem.9b01573
    Crane BR, Arvai AS, Gachhui R, Wu CQ, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA (1997) The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278(5337): 425−431 doi: 10.1126/science.278.5337.425
    Curnow P, Booth PJ (2010) The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein. J Mol Biol 403(4): 630−642 doi: 10.1016/j.jmb.2010.09.003
    Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kroller-Schon S, Munzel T, Li H (2019) New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int J Mol Sci 20(1): 187. https://doi.org/10.3390/ijms20010187
    Do HT, Li H, Chreifi G, Poulos TL, Silverman RB (2019) Optimization of blood-brain barrier permeability with potent and selective human neuronal nitric oxide synthase inhibitors having a 2-aminopyridine scaffold. J Med Chem 62(5): 2690−2707 doi: 10.1021/acs.jmedchem.8b02032
    Do HT, Wang HY, Li H, Chreifi G, Poulos TL, Silverman RB (2017) Improvement of cell permeability of human neuronal nitric oxide synthase inhibitors using potent and selective 2-aminopyridine-based scaffolds with a fluorobenzene linker. J Med Chem 60(22): 9360−9375 doi: 10.1021/acs.jmedchem.7b01356
    Dudzinski DM, Igarashi J, Greif D, Michel T (2006) The regulation and pharmacology of endothelial nitric oxide synthase. Annu Rev Pharmacol Toxicol 46: 235−276 doi: 10.1146/annurev.pharmtox.44.101802.121844
    Duncan AJ, Heales SJ (2005) Nitric oxide and neurological disorders. Mol Aspects Med 26(1-2): 67−96 doi: 10.1016/j.mam.2004.09.004
    Erdal EP, Litzinger EA, Seo JW, Zhu YQ, Ji HT, Silverman RB (2005) Selective neuronal nitric oxide synthase inhibitors. Curr Top Med Chem 5(7): 603−624 doi: 10.2174/1568026054679317
    Faria AM, Papadirnitriou A, Silva KC, de Faria JML, de Faria JBL (2012) Uncoupling endothelial nitric oxide synthase is ameliorated by green tea in experimental diabetes by re-establishing tetrahydrobiopterin levels. Diabetes 61(7): 1838−1847 doi: 10.2337/db11-1241
    Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC (1999) Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nat Struct Biol 6(3): 233−242 doi: 10.1038/6675
    Forstermann U, Munzel T (2006) Endothelial nitric oxide synthase in vascular disease — From marvel to menace. Circulation 113(13): 1708−1714 doi: 10.1161/CIRCULATIONAHA.105.602532
    Furukawa A, Kakita K, Yamada T, Ishizuka M, Sakamoto J, Hatori N, Maeda N, Ohsaka F, Saitoh T, Nomura T, Kuroki K, Nambu H, Arase H, Matsunaga S, Anada M, Ose T, Hashimoto S, Maenaka K (2017) Structural and thermodynamic analyses reveal critical features of glycopeptide recognition by the human PILRalpha immune cell receptor. J Biol Chem 292(51): 21128−21136 doi: 10.1074/jbc.M117.799239
    GarciaCardena G, Fan R, Stern DF, Liu JW, Sessa WC (1996) Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin-1. J Biol Chem 271(44): 27237−27240 doi: 10.1074/jbc.271.44.27237
    Garcin ED, Arvai AS, Rosenfeld RJ, Kroeger MD, Crane BR, Andersson G, Andrews G, Hamley PJ, Mallinder PR, Nicholls DJ, St-Gallay SA, Tinker AC, Gensmantel NP, Mete A, Cheshire DR, Connolly S, Stuehr DJ, Aberg A, Wallace AV, Tainer JA, Getzoff ED (2008) Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat Chem Biol 4(11): 700−707 doi: 10.1038/nchembio.115
    Greene JM, Feugang JM, Pfeiffer KE, Stokes JV, Bowers SD, Ryan PL (2013) L-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod Biol Endocrinol 11: 15. https://doi.org/10.1186/1477-7827-11-15
    Griffith OW, Stuehr DJ (1995) Nitric oxides synthases - properties and catalytic mechanism. Annu Rev Physiol 57: 707−736 doi: 10.1146/annurev.ph.57.030195.003423
    Hall AV, Antoniou H, Wang Y, Cheung AH, Arbus AM, Olson SL, Lu WC, Kau CL, Marsden PA (1994) Structural organization of the human neuronal nitric oxide synthase gene (NOS1). J Biol Chem 269(52): 33082−33090 doi: 10.1016/S0021-9258(20)30099-5
    Hemmens B, Mayer B (1998) Enzymology of nitric oxide synthases. Methods Mol Biol 100: 1−32
    Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA (1999) Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 284(5415): 812−815 doi: 10.1126/science.284.5415.812
    Huang H, Silverman RB (2013) Recent advances toward improving the bioavailability of neuronal nitric oxide synthase inhibitors. Curr Top Med Chem 13(7): 803−812 doi: 10.2174/1568026611313070003
    Janaszak-Jasiecka A, Ploska A, Wieronska JM, Dobrucki LW, Kalinowski L (2023) Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 28(1): 21. https://doi.org/10.1186/s11658-023-00423-2
    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873): 583−589 doi: 10.1038/s41586-021-03819-2
    Kang S, Li H, Tang W, Martasek P, Roman LJ, Poulos TL, Silverman RB (2015) 2-aminopyridines with a truncated side chain to improve human neuronal nitric oxide synthase inhibitory potency and selectivity. J Med Chem 58(14): 5548−5560 doi: 10.1021/acs.jmedchem.5b00573
    Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372(3): 774−797 doi: 10.1016/j.jmb.2007.05.022
    Lajoix AD, Pugniere M, Roquet F, Mani JC, Dietz S, Linck N, Faurie F, Ribes G, Petit P, Gross R (2004) Changes in the dimeric state of neuronal nitric oxide synthase affect the kinetics of secretagogue-induced insulin response. Diabetes 53(6): 1467−1474 doi: 10.2337/diabetes.53.6.1467
    Le Gouill E, Jimenez M, Binnert C, Jayet PY, Thalmann S, Nicod P, Scherrer U, Vollenweider P (2007) Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes 56(11): 2690−2696 doi: 10.2337/db06-1228
    Lee SR, Schriefer JM, Gunnels TA, Harvey IC, Bloomer RJ (2013) Acute oral intake of a higenamine-based dietary supplement increases circulating free fatty acids and energy expenditure in human subjects. Lipids Health Dis 12: 148. https://doi.org/10.1186/1476-511X-12-148
    Li H, Evenson RJ, Chreifi G, Silverman RB, Poulos TL (2018) Structural basis for isoform selective nitric oxide synthase inhibition by thiophene-2-carboximidamides. Biochemistry 57(44): 6319−6325 doi: 10.1021/acs.biochem.8b00895
    Li H, Jamal J, Delker S, Plaza C, Ji H, Jing Q, Huang H, Kang S, Silverman RB, Poulos TL (2014a) The mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in nitric oxide synthases. Biochemistry 53(32): 5272−5279 doi: 10.1021/bi500561h
    Li H, Jamal J, Plaza C, Pineda SH, Chreifi G, Jing Q, Cinelli MA, Silverman RB, Poulos TL (2014b) Structures of human constitutive nitric oxide synthases. Acta Crystallogr D Biol Crystallogr 70(Pt 10): 2667-2674
    Li H, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99(1): 293−305 doi: 10.1016/j.jinorgbio.2004.10.016
    Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21(4): 361−374 doi: 10.1111/j.1365-2362.1991.tb01383.x
    Mukherjee P, Li H, Sevrioukova I, Chreifi G, Martasek P, Roman LJ, Poulos TL, Silverman RB (2015) Novel 2, 4-disubstituted pyrimidines as potent, selective, and cell-permeable inhibitors of neuronal nitric oxide synthase. J Med Chem 58(3): 1067−1088 doi: 10.1021/jm501719e
    Murad F, Forstermann U, Nakane M, Pollock J, Tracey R, Matsumoto T, Buechler W (1993) The nitric oxide-cyclic GMP signal transduction system for intracellular and intercellular communication. Adv Second Messenger Phosphoprotein Res 28: 101−109
    Murphy MP (1999) Nitric oxide and cell death. Biochim Biophys Acta 1411(2-3): 401−414 doi: 10.1016/S0005-2728(99)00029-8
    Nakane M, Mitchell J, Forstermann U, Murad F (1991) Phosphorylation by calcium calmodulin-dependent protein kinase-ii and protein-kinase-c modulates the activity of nitric-oxide synthase. Biochem Biophys Res Commun 180(3): 1396−1402 doi: 10.1016/S0006-291X(05)81351-8
    Nathan C, Xie QW (1994) Nitric-oxide synthases - roles, tolls, and controls. Cell 78(6): 915−918 doi: 10.1016/0092-8674(94)90266-6
    Nishida CR, de Montellano PRO (1999) Autoinhibition of endothelial nitric-oxide synthase - Identification of an electron transfer control element. J Biol Chem 274(21): 14692−14698 doi: 10.1074/jbc.274.21.14692
    Nishida CR, de Montellano PRO (2001) Control of electron transfer in nitric-oxide synthases - Swapping of autoinhibitory elements among nitric-oxide synthase isoforms. J Biol Chem 276(23): 20116−20124 doi: 10.1074/jbc.M101548200
    Ost TW, Daff S (2005) Thermodynamic and kinetic analysis of the nitrosyl, carbonyl, and dioxy heme complexes of neuronal nitric-oxide synthase. The roles of substrate and tetrahydrobiopterin in oxygen activation. J Biol Chem 280(2): 965−973
    Pensa AV, Cinelli MA, Li H, Chreifi G, Mukherjee P, Roman LJ, Martasek P, Poulos TL, Silverman RB (2017) Hydrophilic, Potent, and Selective 7-Substituted 2-Aminoquinolines as Improved Human Neuronal Nitric Oxide Synthase Inhibitors. J Med Chem 60(16): 7146−7165 doi: 10.1021/acs.jmedchem.7b00835
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-A visualization system for exploratory research and analysis. J Comput Chem 25(13): 1605−1612 doi: 10.1002/jcc.20084
    Piazza M, Dieckmann T, Guillemette JG (2016) Structural studies of a complex between endothelial nitric oxide synthase and calmodulin at physiological calcium concentration. Biochemistry 55(42): 5962−5971 doi: 10.1021/acs.biochem.6b00821
    Piazza M, Futrega K, Spratt DE, Dieckmann T, Guillemette JG (2012) Structure and dynamics of calmodulin (CaM) bound to nitric oxide synthase peptides: effects of a phosphomimetic CaM mutation. Biochemistry 51(17): 3651−3661 doi: 10.1021/bi300327z
    Piazza M, Taiakina V, Guillemette SR, Guillemette JG, Dieckmann T (2014) Solution structure of calmodulin bound to the target peptide of endothelial nitric oxide synthase phosphorylated at Thr495. Biochemistry 53(8): 1241−1249 doi: 10.1021/bi401466s
    Qiao XH, Zhang YM, Ye AJ, Zhang YN, Xie T, Lv ZY, Shi C, Wu DL, Chu BY, Wu X, Zhang WQ, Wang P, Liu GH, Wang CC, Wang L, Chen C (2022) ER reductive stress caused by Ero1 alpha S-nitrosation accelerates senescence. Free Radic Biol Med 180: 165−178 doi: 10.1016/j.freeradbiomed.2022.01.006
    Raman CS, Li HY, Martasek P, Kral V, Masters BSS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95(7): 939−950 doi: 10.1016/S0092-8674(00)81718-3
    Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42(Web Server issue): W320-324
    Rodriguez-Crespo I, Moenne-Loccoz P, Loehr TM, Ortiz de Montellano PR (1997) Endothelial nitric oxide synthase: modulations of the distal heme site produced by progressive N-terminal deletions. Biochemistry 36(28): 8530−8538 doi: 10.1021/bi970192j
    Roe ND, Ren J (2012) Nitric oxide synthase uncoupling: a therapeutic target in cardiovascular diseases. Vascul Pharmacol 57(5-6): 168−172 doi: 10.1016/j.vph.2012.02.004
    Rosenfeld RJ, Garcin ED, Panda K, Andersson G, Aberg A, Wallace AV, Morris GM, Olson AJ, Stuehr DJ, Tainer JA, Getzoff ED (2002) Conformational changes in nitric oxide synthases induced by chlorzoxazone and nitroindazoles: crystallographic and computational analyses of inhibitor potency. Biochemistry 41(47): 13915−13925 doi: 10.1021/bi026313j
    Shi YS, Fan X, Zhang KY, Ma YL (2023) Association of the endothelial nitric oxide synthase (eNOS) 4a/b polymorphism with the risk of incident diabetic retinopathy in patients with type 2 diabetes mellitus: a systematic review and updated meta-analysis. Ann Med 55(1): 2226908. https://doi.org/10.1080/07853890.2023.2226908
    Silverman RB (2009) Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases. Acc Chem Res 42(3): 439−451 doi: 10.1021/ar800201v
    Stuehr DJ, Haque MM (2019) Nitric oxide synthase enzymology in the 20 years after the Nobel Prize. Br J Pharmacol 176(2): 177−188 doi: 10.1111/bph.14533
    Tang W, Li H, Doud EH, Chen Y, Choing S, Plaza C, Kelleher NL, Poulos TL, Silverman RB (2015) Mechanism of inactivation of neuronal nitric oxide synthase by (s)-2-amino-5-(2-(methylthio)acetimidamido)pentanoic acid. J Am Chem Soc 137(18): 5980−5989 doi: 10.1021/jacs.5b01202
    Thippeswamy T, McKay JS, Quinn JP, Morris R (2006) Nitric oxide, a biological double-faced janus - Is this good or bad? Histol Histopathol 21(4-6): 445-458
    Tripathi MK, Kartawy M, Amal H (2020) The role of nitric oxide in brain disorders: autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol 34: 101567. https://doi.org/10.1016/j.redox.2020.101567
    Uehara T, Nakamura T, Yao D, Shi ZQ, Gu Z, Ma Y, Masliah E, Nomura Y, Lipton SA (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441(7092): 513−517 doi: 10.1038/nature04782
    Wang HY, Qin Y, Li H, Roman LJ, Martasek P, Poulos TL, Silverman RB (2016) Potent and selective human neuronal nitric oxide synthase inhibition by optimization of the 2-aminopyridine-based scaffold with a pyridine linker. J Med Chem 59(10): 4913−4925 doi: 10.1021/acs.jmedchem.6b00273
    Wei CC, Wang ZQ, Durra D, Hemann C, Hille R, Garcin ED, Getzoff ED, Stuehr DJ (2005) The three nitric-oxide synthases differ in their kinetics of tetrahydrobiopterin radical formation, heme-dioxy reduction, and arginine hydroxylation. J Biol Chem 280(10): 8929−8935 doi: 10.1074/jbc.M409737200
    Wei CC, Wang ZQ, Hemann C, Hille R, Stuehr DJ (2003) A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. J Biol Chem 278(47): 46668−46673 doi: 10.1074/jbc.M307682200
    Wei XC, Schneider JG, Shenouda SM, Lee A, Towler DA, Chakravarthy MV, Vita JA, Semenkovich CF (2011) De novo lipogenesis maintains vascular homeostasis through endothelial nitric-oxide synthase (eNOS) palmitoylation. J Biol Chem 286(4): 2933−2945 doi: 10.1074/jbc.M110.193037
    Weinberger B, Laskin DL, Heck DE, Laskin JD (2001) The toxicology of inhaled nitric oxide. Toxicol Sci 59(1): 5−16 doi: 10.1093/toxsci/59.1.5
    Wen J, Li M, Zhang W, Wang H, Bai Y, Hao J, Liu C, Deng K, Zhao Y (2021) Role of higenamine in heart diseases: a mini-review. Front Pharmacol 12: 798495. https://doi.org/10.3389/fphar.2021.798495
    Wu H, Lu L, Chen J, Zhang C, Liu W, Zhuang S (2020) Inhibited nitric oxide production of human endothelial nitric oxide synthase by nitrated and oxygenated polycyclic aromatic hydrocarbons. Environ Sci Technol 54(5): 2922−2930 doi: 10.1021/acs.est.9b07163
    Yoshimura M, Yasue H, Nakayama M, Shimasaki Y, Sumida H, Sugiyama S, Kugiyama K, Ogawa H, Ogawa Y, Saito Y, Miyamoto Y, Nakao K (1998) A missense Glu298Asp variant in the endothelial nitric oxide synthase gene is associated with coronary spasm in the Japanese. Hum Genet 103(1): 65−69 doi: 10.1007/s004390050785
    Yu J, Zhou Y, Tanaka I, Yao M (2010) Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere. Bioinformatics 26(1): 46−52 doi: 10.1093/bioinformatics/btp599
    Zhu H, Li Z, Zhang N (2022) Higenamine as a potential pharmacologic stress agent in the detection of coronary artery disease. Chin Med Sci J 37(3): 275−281 doi: 10.24920/003936
  • Supplementary Materials.pdf
    Supplementary Tables.zip
    Supplementary Structures.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (645) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return