Volume 8 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Xiaodan Zhao, Xuyao Priscilla Liu, Jie Yan. DNA-binding proteins studied by mechanical manipulation and AFM imaging of single DNA molecules[J]. Biophysics Reports, 2022, 8(4): 212-224. doi: 10.52601/bpr.2022.220015
Citation: Xiaodan Zhao, Xuyao Priscilla Liu, Jie Yan. DNA-binding proteins studied by mechanical manipulation and AFM imaging of single DNA molecules[J]. Biophysics Reports, 2022, 8(4): 212-224. doi: 10.52601/bpr.2022.220015

DNA-binding proteins studied by mechanical manipulation and AFM imaging of single DNA molecules

doi: 10.52601/bpr.2022.220015
More Information
  • Corresponding author: phyyj@nus.edu.sg (Jie Yan)
  • Received Date: 22 June 2022
  • Accepted Date: 17 July 2022
  • Available Online: 08 November 2022
  • Publish Date: 31 August 2022
  • The functions of DNA-binding proteins are dependent on protein-induced DNA distortion, the binding preference to special sequences, DNA secondary structures, the binding kinetics and the binding affinity. Recent rapid progress in single-molecule imaging and mechanical manipulation technologies have made it possible to directly probe the DNA binding by proteins, footprint the positions of the bound proteins on DNA, quantify the kinetics and the affinity of protein–DNA interactions, and study the interplay of protein binding with DNA conformation and DNA topology. Here, we review the applications of an integrated approach where the single-DNA imaging using atomic force microscopy and the mechanical manipulation of single DNA molecules are combined to study the DNA–protein interactions. We also provide our views on how these findings yield new insights into understanding the roles of several essential DNA architectural proteins.

  • Xiaodan Zhao, Xuyao Priscilla Liu and Jie Yan declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.

  • loading
  • Ali Azam T, Iwata A, Nishimura A, Ueda S, Ishihama A (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181(20): 6361−6370 doi: 10.1128/JB.181.20.6361-6370.1999
    Amit R, Oppenheim AB, Stavans J (2003) Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. Biophys J 84(4): 2467−2473 doi: 10.1016/S0006-3495(03)75051-6
    Arold ST, Leonard PG, Parkinson GN, Ladbury JE (2010) H-NS forms a superhelical protein scaffold for DNA condensation. Proc Natl Acad Sci USA 107(36): 15728−15732 doi: 10.1073/pnas.1006966107
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3): 381−395 doi: 10.1038/cr.2011.22
    Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95(24): 14173−14178 doi: 10.1073/pnas.95.24.14173
    Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW, 3rd, Bulyk ML (2006) Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 24(11): 1429−1435 doi: 10.1038/nbt1246
    Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15(5): 496−506 doi: 10.1016/j.gde.2005.08.007
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9): 930−933 doi: 10.1103/PhysRevLett.56.930
    Blank TA, Becker PB (1996) The effect of nucleosome phasing sequences and DNA topology on nucleosome spacing. J Mol Biol 260(1): 1−8 doi: 10.1006/jmbi.1996.0377
    Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14(5): 441−448 doi: 10.1038/nsmb1233
    Brent Brower-Toland MDW (2004) Use of optical trapping techniques to study single-nucleosome dynamics. Methods Enzymol 376: 62−72
    Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13(6): 773−780 doi: 10.1016/j.mib.2010.09.013
    Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol Cell Biol 19(8): 5237−5246 doi: 10.1128/MCB.19.8.5237
    Ceci P, Cellai S, Falvo E, Rivetti C, Rossi GL, Chiancone E (2004) DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Res 32(19): 5935−5944 doi: 10.1093/nar/gkh915
    Dame RT (2005) The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin. Mol Microbiol 56(4): 858−870 doi: 10.1111/j.1365-2958.2005.04598.x
    Dame RT, Wyman C, Goosen N (2000) H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28(18): 3504−3510 doi: 10.1093/nar/28.18.3504
    Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319(5): 1097-1113
    Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8(3): 185−195 doi: 10.1038/nrmicro2261
    Dufrene YF, Ando T, Garcia R, Alsteens D, Martinez-Martin D, Engel A, Gerber C, Muller DJ (2017) Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat Nanotechnol 12(4): 295−307 doi: 10.1038/nnano.2017.45
    Fagerstam LG, Frostell-Karlsson A, Karlsson R, Persson B, Ronnberg I (1992) Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. J Chromatogr 597(1-2): 397−410 doi: 10.1016/0021-9673(92)80137-J
    Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9(23): 6505−6525 doi: 10.1093/nar/9.23.6505
    Fu H, Freedman BS, Lim CT, Heald R, Yan J (2011) Atomic force microscope imaging of chromatin assembled in Xenopus laevis egg extract. Chromosoma 120(3): 245−254 doi: 10.1007/s00412-010-0307-4
    Galas DJ, Schmitz A (1978) DNAse footprinting: a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5(9): 3157−3170 doi: 10.1093/nar/5.9.3157
    Gao Y, Foo YH, Winardhi RS, Tang Q, Yan J, Kenney LJ (2017) Charged residues in the H-NS linker drive DNA binding and gene silencing in single cells. Proc Natl Acad Sci USA 114(47): 12560−12565 doi: 10.1073/pnas.1716721114
    Gerber C, Lang HP (2006) How the doors to the nanoworld were opened. Nat Nanotechnol 1(1): 3−5 doi: 10.1038/nnano.2006.70
    Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P (1975) Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci USA 72(5): 1843−1847 doi: 10.1073/pnas.72.5.1843
    Goodman FO, Garcia N (1991) Roles of the attractive and repulsive forces in atomic-force microscopy. Phys Rev B Condens Matter 43(6): 4728−4731 doi: 10.1103/PhysRevB.43.4728
    Goosen N, van de Putte P (1995) The regulation of transcription initiation by integration host factor. Mol Microbiol 16(1): 1−7 doi: 10.1111/j.1365-2958.1995.tb02386.x
    Gulvady R, Gao Y, Kenney LJ, Yan J (2018) A single molecule analysis of H-NS uncouples DNA binding affinity from DNA specificity. Nucleic Acids Res 46(19): 10216−10224 doi: 10.1093/nar/gky826
    Hales LM, Gumport RI, Gardner JF (1994) Determining the DNA sequence elements required for binding integration host factor to two different target sites. J Bacteriol 176(10): 2999−3006 doi: 10.1128/jb.176.10.2999-3006.1994
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD (2009) High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16(2): 124−129 doi: 10.1038/nsmb.1526
    Hansma HG, Laney DE, Bezanilla M, Sinsheimer RL, Hansma PK (1995) Applications for atomic force microscopy of DNA. Biophys J 68(5): 1672−1677 doi: 10.1016/S0006-3495(95)80343-7
    Hansma HG, Pietrasanta LI, Golan R, Sitko JC, Viani MB, Paloczi GT, Smith BL, Thrower D, Hansma PK (2000) Recent highlights from atomic force microscopy of DNA. J Biomol Struct Dyn 17 (Suppl 1):271−275
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5): 347−355 doi: 10.1038/nmeth871
    Holde KEv (1989) Chromatin. New York: Springer-Verlag
    Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5): 2685−2708 doi: 10.1021/cr900267p
    Kaczmarczyk A, Brouwer TB, Pham C, Dekker NH, van Noort J (2018) Probing chromatin structure with magnetic tweezers. Methods Mol Biol 1814: 297−323
    Kaczmarczyk A, Meng H, Ordu O, Noort JV, Dekker NH (2020) Chromatin fibers stabilize nucleosomes under torsional stress. Nat Commun 11(1): 126. https://doi.org/10.1038/s41467-019-13891-y
    Koch SJ, Shundrovsky A, Jantzen BC, Wang MD (2002) Probing protein-DNA interactions by unzipping a single DNA double helix. Biophys J 83(2): 1098−1105 doi: 10.1016/S0006-3495(02)75233-8
    Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46: 931−954 doi: 10.1146/annurev.bi.46.070177.004435
    Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16(5): 534−540 doi: 10.1038/nsmb.1590
    Kruithof M, van Noort J (2009) Hidden Markov analysis of nucleosome unwrapping under force. Biophys J 96(9): 3708−3715 doi: 10.1016/j.bpj.2009.01.048
    Krzemien KM, Beckers M, Quack S, Michaelis J (2017) Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution. PLoS one 12(3): e0173459. https://doi.org/10.1371/journal.pone.0173459
    Lal R, John SA (1994) Biological applications of atomic force microscopy. Am J Physiol 266(1 Pt 1): C1-C21
    Lang B, Blot N, Bouffartigues E, Buckle M, Geertz M, Gualerzi CO, Mavathur R, Muskhelishvili G, Pon CL, Rimsky S, Stella S, Babu MM, Travers A (2007) High-affinity DNA binding sites for H-NS provide a molecular basis for selective silencing within proteobacterial genomes. Nucleic Acids Res 35(18): 6330−6337 doi: 10.1093/nar/gkm712
    Le S, Chen H, Cong P, Lin J, Droge P, Yan J (2013) Mechanosensing of DNA bending in a single specific protein-DNA complex. Sci Rep 3: 3508. https://doi.org/10.1038/srep03508
    Lee SY, Lim CJ, Droge P, Yan J (2015) Regulation of bacterial DNA packaging in early stationary phase by competitive DNA binding of Dps and IHF. Sci Rep 5: 18146. https://doi.org/10.1038/srep18146
    Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang P-Y, Li Q, Zhang Z, Li M, Li G (2016) FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. Molecular Cell 64(1): 120−133 doi: 10.1016/j.molcel.2016.08.024
    Liang L, Ma K, Wang Z, Janissen R, Yu Z (2021) Dynamics and inhibition of MLL1 CXXC domain on DNA revealed by single-molecule quantification. Biophys J 120(16): 3283−3291 doi: 10.1016/j.bpj.2021.03.045
    Lim CJ, Lee SY, Kenney LJ, Yan J (2012a) Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing. Sci Rep 2: 509. https://doi.org/10.1038/srep00509
    Lim CJ, Whang YR, Kenney LJ, Yan J (2012b) Gene silencing H-NS paralogue StpA forms a rigid protein filament along DNA that blocks DNA accessibility. Nucleic Acids Res 40(8): 3316−3328 doi: 10.1093/nar/gkr1247
    Lipfert J, Wiggin M, Kerssemakers JW, Pedaci F, Dekker NH (2011) Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat Commun 2: 439. https://doi.org/10.1038/ncomms1450
    Liu Y, Chen H, Kenney LJ, Yan J (2010) A divalent switch drives H-NS/DNA-binding conformations between stiffening and bridging modes. Genes Dev 24(4): 339−344 doi: 10.1101/gad.1883510
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389(6648): 251-260
    Luijsterburg MS, Noom MC, Wuite GJ, Dame RT (2006) The architectural role of nucleoid-associated proteins in the organization of bacterial chromatin: a molecular perspective. J Struct Biol 156(2): 262−272 doi: 10.1016/j.jsb.2006.05.006
    Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43(6): 393−418 doi: 10.1080/10409230802528488
    Manosas M, Camunas-Soler J, Croquette V, Ritort F (2017) Single molecule high-throughput footprinting of small and large DNA ligands. Nat Commun 8(1): 304. https://doi.org/10.1038/s41467-017-00379-w
    Mihardja S, Spakowitz AJ, Zhang Y, Bustamante C (2006) Effect of force on mononucleosomal dynamics. Proc Natl Acad Sci USA 103(43): 15871−15876 doi: 10.1073/pnas.0607526103
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491−505 doi: 10.1038/nmeth.1218
    Ngo TT, Zhang Q, Zhou R, Yodh JG, Ha T (2015) Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160(6): 1135−1144 doi: 10.1016/j.cell.2015.02.001
    Norton VG, Imai BS, Yau P, Bradbury EM (1989) Histone acetylation reduces nucleosome core particle linking number change. Cell 57(3): 449−457 doi: 10.1016/0092-8674(89)90920-3
    Ozturk N, Singh I, Mehta A, Braun T, Barreto G (2014) HMGA proteins as modulators of chromatin structure during transcriptional activation. Front Cell Dev Biol 2: 5. https://doi.org/10.3389/fcell.2014.00005
    Poirier MG, Bussiek M, Langowski J, Widom J (2008) Spontaneous access to DNA Target sites in folded chromatin fibers. J Mol Biol 379(4): 772−786 doi: 10.1016/j.jmb.2008.04.025
    Prieto AI, Kahramanoglou C, Ali RM, Fraser GM, Seshasayee AS, Luscombe NM (2012) Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Res 40(8): 3524−3537 doi: 10.1093/nar/gkr1236
    Reeves R (2010) Nuclear functions of the HMG proteins. Biochim Biophys Acta 1799(1-2): 3−14 doi: 10.1016/j.bbagrm.2009.09.001
    Renault M, Garcia J, Cordeiro TN, Baldus M, Pons M (2013) Protein oligomers studied by solid-state NMR-the case of the full-length nucleoid-associated protein histone-like nucleoid structuring protein. FEBS J 280(12): 2916−2928 doi: 10.1111/febs.12297
    Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87(7): 1295−1306 doi: 10.1016/S0092-8674(00)81824-3
    Royer CA, Scarlata SF (2008) Fluorescence approaches to quantifying biomolecular interactions. Methods Enzymol 450: 79−106
    Simpson RT, Thoma F, Brubaker JM (1985) Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell 42(3): 799−808 doi: 10.1016/0092-8674(85)90276-4
    Spurio R, Durrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO (1992) Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231(2): 201−211 doi: 10.1007/BF00279792
    van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of flexible hinges and rigid filaments. Proc Natl Acad Sci USA 101(18): 6969−6974 doi: 10.1073/pnas.0308230101
    Vlijm R, Lee M, Lipfert J, Lusser A, Dekker C, Dekker NH (2015) Nucleosome assembly dynamics involve spontaneous fluctuations in the handedness of tetrasomes. Cell Rep 10(2): 216−225 doi: 10.1016/j.celrep.2014.12.022
    Vlijm R, Smitshuijzen JS, Lusser A, Dekker C (2012) NAP1-assisted nucleosome assembly on DNA measured in real time by single-molecule magnetic tweezers. PLoS One 7(9): e46306. https://doi.org/10.1371/journal.pone.0046306
    Wang H, Bash R, Yodh JG, Hager GL, Lohr D, Lindsay SM (2002) Glutaraldehyde modified mica: a new surface for atomic force microscopy of chromatin. Biophys J 83(6): 3619−3625 doi: 10.1016/S0006-3495(02)75362-9
    Wang Y, Yan J, Goult BT (2019) Force-dependent binding constants. Biochemistry 58(47): 4696−4709 doi: 10.1021/acs.biochem.9b00453
    Weber G (1952) Polarization of the fluorescence of macromolecules. I. Theory and experimental method. Biochem J 51(2): 145−155
    Widom J (1989) Toward a unified model of chromatin folding. Annu Rev Biophys Biophys Chem 18: 365−395 doi: 10.1146/annurev.bb.18.060189.002053
    Winardhi RS, Castang S, Dove SL, Yan J (2014) Single-molecule study on histone-like nucleoid-structuring protein (H-NS) paralogue in Pseudomonas aeruginosa: MvaU bears DNA organization mode similarities to MvaT. PLoS One 9(11): e112246. https://doi.org/10.1371/journal.pone.0112246
    Winardhi RS, Fu W, Castang S, Li Y, Dove SL, Yan J (2012) Higher order oligomerization is required for H-NS family member MvaT to form gene-silencing nucleoprotein filament. Nucleic Acids Res 40(18): 8942−8952 doi: 10.1093/nar/gks669
    Winardhi RS, Yan J, Kenney LJ (2015) H-NS regulates gene expression and compacts the nucleoid: insights from single-molecule experiments. Biophys J 109(7): 1321−1329 doi: 10.1016/j.bpj.2015.08.016
    Woodcock CL, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11(2): 130−135 doi: 10.1016/S0959-437X(00)00169-6
    Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF (2007) Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATP-dependent chromatin assembly dynamics. Mol Biol Cell 18(2): 464−474 doi: 10.1091/mbc.e06-09-0800
    Yoshua SB, Watson GD, Howard JAL, Velasco-Berrelleza V, Leake MC, Noy A (2021) Integration host factor bends and bridges DNA in a multiplicity of binding modes with varying specificity. Nucleic Acids Res 49(15): 8684−8698 doi: 10.1093/nar/gkab641
    Yu H, Lim HH, Tjokro NO, Sathiyanathan P, Natarajan S, Chew TW, Klonisch T, Goodman SD, Surana U, Droge P (2014) Chaperoning HMGA2 protein protects stalled replication forks in stem and cancer cells. Cell Rep 6(4): 684−697 doi: 10.1016/j.celrep.2014.01.014
    Zhao X, Guo S, Lu C, Chen J, Le S, Fu H, Yan J (2019) Single-molecule manipulation quantification of site-specific DNA binding. Curr Opin Chem Biol 53: 106−117 doi: 10.1016/j.cbpa.2019.08.006
    Zhao X, Peter S, Droge P, Yan J (2017) Oncofetal HMGA2 effectively curbs unconstrained (+) and (-) DNA supercoiling. Sci Rep 7(1): 8440. https://doi.org/10.1038/s41598-017-09104-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (991) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return