Volume 8 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Lin-ge Li, Zhonghuai Hou. Theoretical modelling of liquid–liquid phase separation: from particle-based to field-based simulation[J]. Biophysics Reports, 2022, 8(2): 55-67. doi: 10.52601/bpr.2022.210029
Citation: Lin-ge Li, Zhonghuai Hou. Theoretical modelling of liquid–liquid phase separation: from particle-based to field-based simulation[J]. Biophysics Reports, 2022, 8(2): 55-67. doi: 10.52601/bpr.2022.210029

Theoretical modelling of liquid–liquid phase separation: from particle-based to field-based simulation

doi: 10.52601/bpr.2022.210029
Funds:  This work is supported by MOST (2018YFA0208702) and NSFC (32090040, 32090044, 21833007).
More Information
  • Corresponding author: hzhlj@ustc.edu.cn (Z. Hou)
  • Received Date: 28 July 2021
  • Accepted Date: 09 February 2022
  • Available Online: 25 March 2022
  • Publish Date: 22 April 2022
  • Liquid–liquid phase separation (LLPS) has proved to be ubiquitous in living cells, forming membraneless organelles (MLOs) and dynamic condensations essential in physiological processes. However, some underlying mechanisms remain challenging to unravel experimentally, making theoretical modeling an indispensable aspect. Here we present a protocol for understanding LLPS from fundamental physics to detailed modeling procedures. The protocol involves a comprehensive physical picture on selecting suitable theoretical approaches, as well as how and what to interpret and resolve from the results. On the particle-based level, we elaborate on coarse-grained simulation procedures from building up models, identifying crucial interactions to running simulations to obtain phase diagrams and other concerned properties. We also outline field-based theories which give the system's density profile to determine phase diagrams and provide dynamic properties by studying the time evolution of density field, enabling us to characterize LLPS systems with larger time and length scales and to further include other nonequilibrium factors such as chemical reactions.
  • loading
  • [1]
    Alshareedah I, Moosa MM, Raju M, Potoyan DA, Banerjee PR (2020) Phase transition of RNA−protein complexes into ordered hollow condensates. Proc Natl Acad Sci USA 117(27): 15650−15658 doi: 10.1073/pnas.1922365117
    [2]
    Ando T, Skolnick J (2010) Crowding and hydrodynamic interactions likely dominate in vivo macromolecular motion. Proc Natl Acad Sci USA 107(43): 18457−18462 doi: 10.1073/pnas.1011354107
    [3]
    André AAM, Spruijt E (2020) Liquid–liquid phase separation in crowded environments. Int J Mol Sci 21(16): 5908. https://doi.org/10.3390/ijms21165908
    [4]
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comp Phys Commun 91: 43−56 doi: 10.1016/0010-4655(95)00042-E
    [5]
    Bianchi E, Blaak R, Likos CN (2011) Patchy colloids: state of the art and perspectives. Phys Chem Chem Phys 13: 6397−6410 doi: 10.1039/c0cp02296a
    [6]
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6): 420−435 doi: 10.1016/j.tcb.2018.02.004
    [7]
    Borukhov S, Lee J, Laptenko O (2005) Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol Microbiol 55(5): 1315−1324
    [8]
    Bracha D, Walls MT, Wei M-T, Zhu L, Kurian M, Avalos JL, Toettcher JE, Brangwynne CP (2019) Mapping local and global liquid phase behavior in living cells using photo-oligomerizable seeds. Cell 176(1-2): 407. https://doi.org/10.1016/j.cell.2018.12.026
    [9]
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935): 1729−1732 doi: 10.1126/science.1172046
    [10]
    Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci 108(11): 4334−4339 doi: 10.1073/pnas.1017150108
    [11]
    Brangwynne Clifford P, Tompa P, Pappu Rohit V (2015) Polymer physics of intracellular phase transitions. Nat Phys 11(11): 899−904 doi: 10.1038/nphys3532
    [12]
    Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60: 231−241 doi: 10.1016/j.molcel.2015.09.006
    [13]
    Chang L-W, Lytle TK, Radhakrishna M, Madinya JJ, Vélez J, Sing CE, Perry SL (2017) Sequence and entropy-based control of complex coacervates. Nat Commun 8(1): 1273. https://doi.org/10.1038/s41467-017-01249-1
    [14]
    Choi J-M, Dar F, Pappu RV (2019) LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 15(10): e1007028. https://doi.org/10.1371/journal.pcbi.1007028
    [15]
    Conicella AE, Zerze GH, Mittal J, Fawzi NL (2016) ALS mutations disrupt phase separation mediated by α-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24: 1537−1549 doi: 10.1016/j.str.2016.07.007
    [16]
    Dannenhoffer-Lafage T, Best RB (2021) A data-driven hydrophobicity scale for predicting liquid–liquid phase separation of proteins. J Phys Chem B 125(16): 4046−4056 doi: 10.1021/acs.jpcb.0c11479
    [17]
    Das S, Amin AN, Lin Y-H, Chan HS (2018a) Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. Phys Chem Chem Phys 20: 28558−28574 doi: 10.1039/C8CP05095C
    [18]
    Das S, Eisen A, Lin Y-H, Chan HS (2018b) A lattice model of charge-pattern-dependent polyampholyte phase separation. J Phys Chem B 122: 5418−5431
    [19]
    Dignon GL, Zheng W, Kim YC, Best RB, Mittal J (2018) Sequence determinants of protein phase behavior from a coarse-grained model. PLoS Comput Biol 14(1): e1005941. https://doi.org/10.1371/journal.pcbi.1005941
    [20]
    Du Y, Jiang H, Hou Z (2019a) Self-assembly of active core corona particles into highly ordered and self-healing structures. J Chem Phys 151(15): 154904. https://doi.org/10.1063/1.5121802
    [21]
    Du Y, Jiang H, Hou Z (2019b) Study of active Brownian particle diffusion in polymer solutions. Soft Matter 15(9): 2020−2031 doi: 10.1039/C8SM02292E
    [22]
    Falk M, Feodorova Y, Naumova N, Imakaev M, Lajoie BR, Leonhardt H, Joffe B, Dekker J, Fudenberg G, Solovei I, Mirny LA (2019) Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature 570: 395−399 doi: 10.1038/s41586-019-1275-3
    [23]
    Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10: 51−61 doi: 10.1063/1.1723621
    [24]
    Gasior K, Zhao J, McLaughlin G, Forest MG, Gladfelter AS, Newby J (2019) Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates. Phys Rev E 99(1-1): 012411. https://doi.org/10.1103/PhysRevE.99.012411
    [25]
    Gou Y-l, Jiang H-j, Hou Z-h (2021) Emergent swarming states in active particles system with opposite anisotropic interactions. Chin J Chem Phys 33(6): 717. https://doi.org/10.1063/1674-0068/cjcp2003037
    [26]
    Guillén-Boixet J, Kopach A, Holehouse AS, Wittmann S, Jahnel M, Schlüßler R, Kim K, Trussina IREA, Wang J, Mateju D (2020) RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181: 346−361 doi: 10.1016/j.cell.2020.03.049
    [27]
    Henninger JE, Oksuz O, Shrinivas K, Sagi I, LeRoy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM, Lee TI, Sharp PA, Cissé II, Chakraborty AK, Young RA (2021) RNA-mediated feedback control of transcriptional condensates. Cell 184: 207−225.e224 doi: 10.1016/j.cell.2020.11.030
    [28]
    Hohenberg PC, Halperin BI (1977) Theory of dynamic critical phenomena. Rev Mod Phys 49: 435. https://doi.org/10.1103/RevModPhys.49.435
    [29]
    Huang DM, Chandler D (2002) The hydrophobic effect and the influence of solute−solvent attractions. J Phys Chem B 106(8): 2047−2053 doi: 10.1021/jp013289v
    [30]
    Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46: 151−158 doi: 10.1021/j150415a018
    [31]
    Hyman A, Weber C, Jülicher F (2014) Liquid-liquid phase separation in biology. Annu Review Cell Dev Biol 30: 39−58 doi: 10.1146/annurev-cellbio-100913-013325
    [32]
    Jiang H, Hou Z (2014) Motion transition of active filaments: rotation without hydrodynamic interactions. Soft Matter 10(7): 1012−1017 doi: 10.1039/c3sm52291a
    [33]
    Joseph JA, Espinosa JR, Sanchez-Burgos I, Garaizar A, Frenkel D, Collepardo-Guevara R (2021) Thermodynamics and kinetics of phase separation of protein-RNA mixtures by a minimal model. Biophys J 120(7): 1219−1230 doi: 10.1016/j.bpj.2021.01.031
    [34]
    Kapcha LH, Rossky PJ (2014) A simple atomic-level hydrophobicity scale reveals protein interfacial structure. J Mol Biol 426: 484−498 doi: 10.1016/j.jmb.2013.09.039
    [35]
    Kim J, Keyes T, Straub JE (2010) Generalized replica exchange method. J Chem Phys 132: 224107. https://doi.org/10.1063/1.3432176
    [36]
    Kim YC, Hummer G (2008) Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J Mol Biol 375: 1416−1433 doi: 10.1016/j.jmb.2007.11.063
    [37]
    Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. elife 4: e06807. https://doi.org/10.7554/eLife.06807
    [38]
    Lin Y-H, Forman-Kay JD, Chan HS (2016) Sequence-specific polyampholyte phase separation in membraneless organelles. Phys Rev Lett 117(17): 178101. https://doi.org/10.1103/PhysRevLett.117.178101
    [39]
    Martin MG, Siepmann JI (1998) Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. J Phys Chem B 102: 2569−2577
    [40]
    McCarty J, Delaney KT, Danielsen SPO, Fredrickson GH, Shea J-E (2019) Complete phase diagram for liquid–liquid phase separation of intrinsically disordered proteins. J Phys Chem Lett 10: 1644−1652 doi: 10.1021/acs.jpclett.9b00099
    [41]
    Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj Anderson P, Kim Hong J, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163(1): 123−133 doi: 10.1016/j.cell.2015.09.015
    [42]
    Monahan Z, Ryan VH, Janke AM, Burke KA, Rhoads SN, Zerze GH, O'Meally R, Dignon GL, Conicella AE, Zheng W (2017) Phosphorylation of the FUS low‐complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J 36: 2951−2967 doi: 10.15252/embj.201696394
    [43]
    Mundy CJ, Siepmann JI, Klein ML (1995) Calculation of the shear viscosity of decane using a reversible multiple time‐step algorithm. J Chem Phys 102: 3376−3380 doi: 10.1063/1.469211
    [44]
    Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL (2019) Molecular interactions underlying liquid−liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26: 637−648 doi: 10.1038/s41594-019-0250-x
    [45]
    Needleman D, Dogic Z (2017) Active matter at the interface between materials science and cell biology. Nat Rev Mater 2(9): 17048. https://doi.org/10.1038/natrevmats.2017.48
    [46]
    Nott Timothy J, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones David P, Pawson T, Forman-Kay Julie D, Baldwin Andrew J (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57: 936−947 doi: 10.1016/j.molcel.2015.01.013
    [47]
    Overbeek JTG, Voorn MJ (1957) Phase separation in polyelectrolyte solutions.Theory of complex coacervation. J Cell Comp Physiol 49(S1): 7−26 doi: 10.1002/jcp.1030490404
    [48]
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1): 1−19 doi: 10.1006/jcph.1995.1039
    [49]
    Ruff KM, Pappu RV, Holehouse AS (2019) Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Curr Opin Struct Biol 56: 1−10
    [50]
    Salomon-Ferrer R, Gotz AW, Poole D, Le Grand S, Walker RC (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9: 3878−3888
    [51]
    Semenov AN, Rubinstein M (1998) Thermoreversible gelation in solutions of associative polymers.1. Statics. Macromolecules 31: 1373−1385 doi: 10.1021/ma970616h
    [52]
    Shelley MJ (2016) The dynamics of microtubule/motor-protein assemblies in biology and physics. Annu Rev Fluid Mech 48: 487−506 doi: 10.1146/annurev-fluid-010814-013639
    [53]
    Spoelstra WK, Jacques JM, Gonzalez-Linares R, Nobrega FL, Haagsma AC, Dogterom M, Meijer DH, Idema T, Brouns SJJ, Reese L (2021) CRISPR-based DNA and RNA detection with liquid-liquid phase separation. Biophys J 120: 1198−1209 doi: 10.1016/j.bpj.2021.02.013
    [54]
    Wang J, Choi J-M, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174: 688−699 doi: 10.1016/j.cell.2018.06.006
    [55]
    Wei X, Zhou J, Wang Y, Meng F (2020) Modeling elastically mediated liquid-liquid phase separation. Phys Rev Lett 125(26): 268001. https://doi.org/10.1103/PhysRevLett.125.268001
    [56]
    Wessén J, Pal T, Das S, Lin Y-H, Chan HS (2021) A simple explicit-solvent model of polyampholyte phase behaviors and its ramifications for dielectric effects in biomolecular condensates. J Phys Chem B 125: 4337−4358 doi: 10.1021/acs.jpcb.1c00954
    [57]
    Wright MR (2007) An introduction to aqueous electrolyte solutions. John Wiley & Sons
    [58]
    Zerze GlH, Best RB, Mittal J (2015) Sequence-and temperature-dependent properties of unfolded and disordered proteins from atomistic simulations. J Phys Chem B 119: 14622−14630 doi: 10.1021/acs.jpcb.5b08619
    [59]
    Zhang B, Wolynes PG (2015) Topology, structures, and energy landscapes of human chromosomes. Proc Natl Acad Sci USA 112(19): 6062−6067 doi: 10.1073/pnas.1506257112
    [60]
    Zheng W, Mittal J (2020) Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation. Methods Enzymol 646: 1−17
    [61]
    Zwicker D, Decker M, Jaensch S, Hyman AA, Jülicher F (2014) Centrosomes are autocatalytic droplets of pericentriolar material organized by centrioles. Proc Natl Acad Sci USA 111: E2636−E2645 doi: 10.1073/pnas.1404855111
    [62]
    Zwicker D, Seyboldt R, Weber CA, Hyman AA, Jülicher F (2017) Growth and division of active droplets provides a model for protocells. Nat Phys 13: 408−413 doi: 10.1038/nphys3984
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (3176) PDF downloads(341) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return