Volume 8 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Linyu Zuo, Jiawei Ding, Zhi Qi. Visualizing carboxyl-terminal domain of RNA polymerase II recruitment by FET fusion protein condensates with DNA curtains[J]. Biophysics Reports, 2022, 8(2): 80-89. doi: 10.52601/bpr.2022.210027
Citation: Linyu Zuo, Jiawei Ding, Zhi Qi. Visualizing carboxyl-terminal domain of RNA polymerase II recruitment by FET fusion protein condensates with DNA curtains[J]. Biophysics Reports, 2022, 8(2): 80-89. doi: 10.52601/bpr.2022.210027

Visualizing carboxyl-terminal domain of RNA polymerase II recruitment by FET fusion protein condensates with DNA curtains

doi: 10.52601/bpr.2022.210027
Funds:  This work was supported by the National Natural Science Foundation of China (32088101 and 31670762).
More Information
  • Corresponding author: zhiqi7@pku.edu.cn (Z. Qi)
  • Received Date: 25 July 2021
  • Accepted Date: 15 September 2021
  • Available Online: 17 March 2022
  • Publish Date: 22 April 2022
  • Many recent references show that living cells can form some membrane-less organelles by liquid–liquid phase separation (LLPS) of biomolecules, like proteins and nucleic acids. LLPS has been confirmed to link with many important biological functions in living cells, and one of the most important functions of biomolecular condensates is in the field of RNA transcription. Many studies confirm that mammalian RNA polymerase II (Pol II) molecules containing the CTD with different phosphorylation level are purposed to shuttle between initiation condensates and elongation condensates of RNA transcription. Traditional ensemble assays often experience difficulties in quantitively and directly recording the transient recruitment of Pol II CTD. Novel single-molecule approach — DNA curtains can be used to directly visualize biomolecular condensates formation and also recruitment of RNA polymerase II (Pol II) carboxyl-terminal domain (CTD) at the target sites in solution and in real time. This method can offer the potential for new insights into the mechanism of gene transcription. Here, we highlight the detailed protocol of DNA curtains method for studying LLPS.
  • loading
  • [1]
    Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53: 171−194 doi: 10.1146/annurev-genet-112618-043527
    [2]
    Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849(7): 861−870 doi: 10.1016/j.bbagrm.2014.11.009
    [3]
    Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6): 420−435 doi: 10.1016/j.tcb.2018.02.004
    [4]
    Boija A, Klein IA, Sabari BR, Dall'Agnese A, Coffey EL, Zamudio AV, Li CH, Shrinivas K, Manteiga JC, Hannett NM, Abraham BJ, Afeyan LK, Guo YE, Rimel JK, Fant CB, Schuijers J, Lee TI, Taatjes DJ, Young RA (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175(7): 1842−1855 doi: 10.1016/j.cell.2018.10.042
    [5]
    Boija A, Klein IA, Young RA (2021) Biomolecular condensates and cancer. Cancer Cell 39(2): 174−192 doi: 10.1016/j.ccell.2020.12.003
    [6]
    Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324(5935): 1729−1732 doi: 10.1126/science.1172046
    [7]
    Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108(11): 4334−4339 doi: 10.1073/pnas.1017150108
    [8]
    Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60(2): 231−241 doi: 10.1016/j.molcel.2015.09.006
    [9]
    Cho W-K, Spille J-H, Hecht M, Lee C, Li C, Grube V, Cisse II (2018) Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361(6400): 412−415 doi: 10.1126/science.aar4199
    [10]
    Chong SS, Dugast-Darzacq C, Liu Z, Dong P, Dailey GM, Cattoglio C, Heckert A, Banala S, Lavis L, Darzacq X, Tjian R (2018) Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361(6400): 361(6400): eaar2555. doi: 10.1126/science.aar2555
    [11]
    Coletta A, Pinney JW, Solis DYW, Marsh J, Pettifer SR, Attwood TK (2010) Low-complexity regions within protein sequences have position-dependent roles. BMC Syst Biol 4: 43. https://doi.org/10.1186/1752-0509-4-43
    [12]
    Collins BE, Ye LF, Duzdevich D, Greene EC (2014) DNA curtains: novel tools for imaging protein-nucleic acid interactions at the single-molecule level. Methods Cell Biol 123: 217−234
    [13]
    Cramer P (2019) Organization and regulation of gene transcription. Nature 573(7772): 45−54 doi: 10.1038/s41586-019-1517-4
    [14]
    Ficz G, Heintzmann R, Arndt-Jovin DJ (2005) Polycomb group protein complexes exchange rapidly in living Drosophila. Development 132(17): 3963−3976 doi: 10.1242/dev.01950
    [15]
    Finkelstein IJ, Visnapuu ML, Greene EC (2010) Single-molecule imaging reveals mechanisms of protein disruption by a DNA translocase. Nature 468(7326): 983−987 doi: 10.1038/nature09561
    [16]
    Greene EC, Wind S, Fazio T, Gorman J, Visnapuu ML (2010) DNA curtains for high-throughput single-molecule optical imaging. Methods Enzymol 472: 293−315
    [17]
    Guo Q, Shi X, Wang X (2021) RNA and liquid-liquid phase separation. Non-coding RNA Res 6(2): 92−99 doi: 10.1016/j.ncrna.2021.04.003
    [18]
    Henninger JE, Oksuz O, Shrinivas K, Sagi I, Leroy G, Zheng MM, Andrews JO, Zamudio AV, Lazaris C, Hannett NM, Lee TI, Sharp PA, Cissé II, Chakraborty AK, Young RA (2021) RNA-mediated feedback control of transcriptional condensates. Cell 184(1): 207−225 doi: 10.1016/j.cell.2020.11.030
    [19]
    Hnisz D, Shrinivas K, Young RA, Chakraborty AK, Sharp PA (2017) A phase separation model for transcriptional control. Cell 169(1): 13−23 doi: 10.1016/j.cell.2017.02.007
    [20]
    Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546(7657): 243−247 doi: 10.1038/nature22386
    [21]
    Kato M, Han TNW, Xie SH, Shi K, Du XL, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei JM, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4): 753−767 doi: 10.1016/j.cell.2012.04.017
    [22]
    Kruhlak MJ, Lever MA, Fischle W, Verdin E, Bazett-Jones DP, Hendzel MJ (2000) Reduced mobility of the alternate splicing factor (Asf) through the nucleoplasm and steady state speckle compartments. J Cell Biol 150(1): 41−52 doi: 10.1083/jcb.150.1.41
    [23]
    Kwon I, Kato M, Xiang SH, Wu L, Theodoropoulos P, Mirzaei H, Han T, Xie SH, Corden JL, McKnight SL (2013) Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155(5): 1049−1060 doi: 10.1016/j.cell.2013.10.033
    [24]
    Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4(8): 605−612 doi: 10.1038/nrm1172
    [25]
    Li PL, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483(7389): 336−340 doi: 10.1038/nature10879
    [26]
    Matera AG (2003) Cajal bodies. Current Biology 13(13): R503. https://doi.org/10.1016/s0960-9822(03)00438-x
    [27]
    Mcswiggen DT, Mir M, Darzacq X, Tjian R (2019) Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev33(23-24): 1619-1634
    [28]
    Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem, 83: 553-584
    [29]
    Peng SJ, Li WP, Yao YR, Xing WJ, Li PL, Chen CL (2020) Phase separation at the nanoscale quantified by dcFCCS. Proc Natl Acad Sci USA 117(44): 27124−27131 doi: 10.1073/pnas.2008447117
    [30]
    Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404(6778): 604−609 doi: 10.1038/35007077
    [31]
    Platani M, Goldberg I, Swedlow JR, Lamond AI (2000) In vivo analysis of Cajal body movement, separation, and joining in live human cells. J Cell Biol 151(7): 1561−1574 doi: 10.1083/jcb.151.7.1561
    [32]
    Qi Z, Greene EC (2016) Visualizing recombination intermediates with single-stranded DNA curtains. Methods 105: 62−74 doi: 10.1016/j.ymeth.2016.03.027
    [33]
    Reits EAJ, Neefjes JJ (2001) From fixed to FRAP: measuring protein mobility and activity in living cells. Nat Cell Biol 3(6): E145−E147 doi: 10.1038/35078615
    [34]
    Sabari BR, Dall'Agnese A, Boija A, Klein IA, Coffey EL, Shrinivas K, Abraham BJ, Hannett NM, Zamudio AV, Manteiga JC, Li CH, Guo YE, Day DS, Schuijers J, Vasile E, Malik S, Hnisz D, Lee TI, Cisse II, Roeder RG, Sharp PA, Chakraborty AK, Young RA (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361(6400): eaar3958. https://doi.org/10.1126/science.aar3958
    [35]
    Schwartz JC, Wang XY, Podell ER, Cech TR (2013) RNA seeds higher-order assembly of FUS protein. Cell Rep 5(4): 918−925 doi: 10.1016/j.celrep.2013.11.017
    [36]
    Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357(6357): eaaf4382. https://doi.org/10.1126/science.aaf4382
    [37]
    Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490): 62−67 doi: 10.1038/nature13011
    [38]
    Walter H, Brooks DE (1995) Phase separation in cytoplasm, due to macromolecular crowding, is the basis for microcompartmentation. FEBS Lett 361(2-3): 135−139 doi: 10.1016/0014-5793(95)00159-7
    [39]
    Wei M-T, Chang Y-C, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP (2020) Nucleated transcriptional condensates amplify gene expression. Nat Cell Biol 22(10): 1187−1196 doi: 10.1038/s41556-020-00578-6
    [40]
    Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG, Schwanitz G, Hoischen C, Maul G, Dittrich P, Hemmerich P (2008) Dynamics of component exchange at PML nuclear bodies. J Cell Sci 121(16): 2731−2743 doi: 10.1242/jcs.031922
    [41]
    Zhao YL, Jiang YZ, Qi Z (2017) Visualizing biological reaction intermediates with DNA curtains. J Phys D: Appl Phys 50(15): 16. https://doi.org/10.1088/1361-6463/aa59cf
    [42]
    Zhou H, Song Z, Zhong S, Zuo L, Qi Z, Qu L-J, Lai L (2019) Mechanism of DNA-induced phase separation for transcriptional repressor VRN1. Angew Chem Int Ed Engl 58(15): 4858−4862 doi: 10.1002/anie.201810373
    [43]
    Zhu L, Brangwynne CP (2015) Nuclear bodies: the emerging biophysics of nucleoplasmic phases. Curr Opin Cell Biol 34: 23−30 doi: 10.1016/j.ceb.2015.04.003
    [44]
    Zuo L, Zhang G, Massett M, Cheng J, Guo Z, Wang L, Gao Y, Li R, Huang X, Li P, Qi Z (2021) Loci-specific phase separation of FET fusion oncoproteins promotes gene transcription. Nat Commun 12(1): 1491. https://doi.org/10.1038/s41467-021-21690-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (1196) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return