Volume 7 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Lusheng Gu, Wei Ji. Recent progress on single-molecule localization microscopy[J]. Biophysics Reports, 2021, 7(5): 365-376. doi: 10.52601/bpr.2021.210023
Citation: Lusheng Gu, Wei Ji. Recent progress on single-molecule localization microscopy[J]. Biophysics Reports, 2021, 7(5): 365-376. doi: 10.52601/bpr.2021.210023

Recent progress on single-molecule localization microscopy

doi: 10.52601/bpr.2021.210023
Funds:  We apologize to the scientists who made contributions to the field, but have not been cited due to space limitations. Studies in our laboratory were supported by the National Key Research and Development Program of China (2017YFA0505300), the National Natural Science Foundation of China (31700743 and 91954201.), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB37000000), the Youth Innovation Promotion Association of CAS (2013066, 2017135) and Beijing Nova Program (Z202003) from Beijing Municipal Science & Technology Commission.
More Information
  • Corresponding author: jiwei@ibp.ac.cn (W. Ji)
  • Received Date: 30 June 2021
  • Accepted Date: 26 August 2021
  • Publish Date: 31 October 2021
  • Super-resolution imaging based on single-molecule localization has been developed for more than a decade. These techniques can break through diffraction limit of fluorescent microscopy and initially improve the resolution by an order of magnitude to ~20 nm, by introducing photoactivatable/photoswitching probes and centroid fitting method. As the demand of biological research, the localization precision of single-molecules was further improved by several state-of-the-art methods in the past several years. This review focuses on the latest developed techniques which have greatly improved the performance of single-molecule localization microscopy, from measurement principle to hardware design. These methods are essential for the study of nanostructures and biomacromolecule dynamics inside of cells.
  • loading
  • [1]
    Aquino D, Schönle A, Geisler C, v Middendorff C, Wurm CA, Okamura Y, Lang T, Hell SW, Egner A (2011) Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores. Nat Methods 8(4): 353−359 doi: 10.1038/nmeth.1583
    [2]
    Axelrod D (2001) Total internal reflection fluorescence microscopy in cell biology. Traffic 2(11): 764−774 doi: 10.1034/j.1600-0854.2001.21104.x
    [3]
    Backlund MP, Lew MD, Backer AS, Sahl SJ, Grover G, Agrawal A, Piestun R, Moerner WE (2013) The double-helix point spread function enables precise and accurate measurement of 3D single-molecule localization and orientation. Proceedings Volume 8590, Single Molecule Spectroscopy and Superresolution Imaging VI. https://doi.org/10.1117/12.2001671
    [4]
    Badieirostami M, Lew MD, Thompson MA, Moerner W (2010) Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl Phys Lett 97(16): 161103. https://doi.org/10.1063/1.3499652
    [5]
    Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355(6325): 606−612 doi: 10.1126/science.aak9913
    [6]
    Berglund AJ, McMahon MD, McClelland JJ, Liddle JA (2008) Fast, bias-free algorithm for tracking single particles with variable size and shape. Opt Express 16(18): 14064−14075 doi: 10.1364/OE.16.014064
    [7]
    Bertocchi C, Wang Y, Ravasio A, Hara Y, Wu Y, Sailov T, Baird MA, Davidson MW, Zaidel-Bar R, Toyama Y (2017) Nanoscale architecture of cadherin-based cell adhesions. Nat Cell Biol 19(1): 28−37 doi: 10.1038/ncb3456
    [8]
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793): 1642−1645 doi: 10.1126/science.1127344
    [9]
    BETZIG E, TRAUTMAN JK, HARRIS TD, WEINER JS, KOSTELAK RL (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science 251(5000): 1468−1470 doi: 10.1126/science.251.5000.1468
    [10]
    Blom H, Widengren J (2017) Stimulated emission depletion microscopy. Chem Rev 117(11): 7377−7427 doi: 10.1021/acs.chemrev.6b00653
    [11]
    Bourg N, Mayet C, Dupuis G, Barroca T, Bon P, Lécart S, Fort E, Lévêque-Fort S (2015) Direct optical nanoscopy with axially localized detection. Nat Photonics 9(9): 587−593 doi: 10.1038/nphoton.2015.132
    [12]
    Brockman JM, Su H, Blanchard AT, Duan Y, Meyer T, Quach ME, Glazier R, Bazrafshan A, Bender RL, Kellner AV, Ogasawara H, Ma R, Schueder F, Petrich BG, Jungmann R, Li R, Mattheyses AL, Ke Y, Salaita K (2020) Live-cell super-resolved PAINT imaging of piconewton cellular traction forces. Nat Methods 17(10): 1018−1024 doi: 10.1038/s41592-020-0929-2
    [13]
    Cheezum MK, Walker WF, Guilford WH (2001) Quantitative Comparison of Algorithms for Tracking Single Fluorescent Particles. Biophys J 81(4): 2378−2388 doi: 10.1016/S0006-3495(01)75884-5
    [14]
    Chen D, Yu B, Li H, Huo Y, Cao B, Xu G, Niu H (2013) Approach to multiparticle parallel tracking in thick samples with three-dimensional nanoresolution. Opt Lett 38(19): 3712−3715 doi: 10.1364/OL.38.003712
    [15]
    Cnossen J, Hinsdale T, Thorsen RØ, Siemons M, Schueder F, Jungmann R, Smith CS, Rieger B, Stallinga S (2020) Localization microscopy at doubled precision with patterned illumination. Nat Methods 17(1): 59−63 doi: 10.1038/s41592-019-0657-7
    [16]
    Dai M, Jungmann R, Yin P (2016) Optical imaging of individual biomolecules in densely packed clusters. Nat Nanotechnol 11(9): 798−807 doi: 10.1038/nnano.2016.95
    [17]
    Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951): 73−76 doi: 10.1126/science.2321027
    [18]
    Deschamps J, Mund M, Ries J (2014) 3D superresolution microscopy by supercritical angle detection. Opt Express 22(23): 29081−29091 doi: 10.1364/OE.22.029081
    [19]
    Descloux AC, Grussmayer KS, Radenovic A (2019) Parameter-free image resolution estimation based on decorrelation analysis. Nat Methods 16(ARTICLE): 918−924
    [20]
    Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schönle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457(7233): 1159−1162 doi: 10.1038/nature07596
    [21]
    Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW (2018) MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. Proc Natl Acad Sci USA 115(24): 6117−6122 doi: 10.1073/pnas.1801672115
    [22]
    Endesfelder U, Heilemann M (2015) Direct stochastic optical reconstruction microscopy (dSTORM). Methods Mol Biol 1251: 263−276
    [23]
    Geertsema HJ, Aimola G, Fabricius V, Fuerste JP, Kaufer BB, Ewers H (2021) Left-handed DNA-PAINT for improved super-resolution imaging in the nucleus. Nat Biotechnol 39(5): 551−554 doi: 10.1038/s41587-020-00753-y
    [24]
    Grover G, DeLuca K, Quirin S, DeLuca J, Piestun R (2012) Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE). Opt Express 20(24): 26681−26695 doi: 10.1364/OE.20.026681
    [25]
    Grover G, Quirin S, Fiedler C, Piestun R (2011) Photon efficient double-helix PSF microscopy with application to 3D photo-activation localization imaging. Biomed Opt Express 2(11): 3010−3020 doi: 10.1364/BOE.2.003010
    [26]
    Gu L, Li Y, Zhang S, Xue Y, Li W, Li D, Xu T, Ji W (2019) Molecular resolution imaging by repetitive optical selective exposure. Nat Methods 16(11): 1114−1118 doi: 10.1038/s41592-019-0544-2
    [27]
    Gu L, Li Y, Zhang S, Zhou M, Xue Y, Li W, Xu T, Ji W (2021) Molecular-scale axial localization by repetitive optical selective exposure. Nat Methods 18(4): 369−373 doi: 10.1038/s41592-021-01099-2
    [28]
    Gu L, Sheng Y, Chen Y, Chang H, Zhang Y, Lv P, Ji W, Xu T (2014) High-density 3D single molecular analysis based on compressed sensing. Biophys J 106(11): 2443−2449 doi: 10.1016/j.bpj.2014.04.021
    [29]
    Guo Y, Li D, Zhang S, Yang Y, Liu J-J, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175(5): 1430−1442 doi: 10.1016/j.cell.2018.09.057
    [30]
    Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37): 13081−13086 doi: 10.1073/pnas.0406877102
    [31]
    Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198(2): 82−87 doi: 10.1046/j.1365-2818.2000.00710.x
    [32]
    Gustavsson A-K, Petrov PN, Lee MY, Shechtman Y, Moerner WE (2018) 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat Commun 9(1): 123. https://doi.org/10.1038/s41467-017-02563-4
    [33]
    Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, Hell SW (2020) MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat Methods 17(2): 217−224 doi: 10.1038/s41592-019-0688-0
    [34]
    Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21(11): 1347−1355 doi: 10.1038/nbt895
    [35]
    Hell SW (2007) Far-Field Optical Nanoscopy. Science 316(5828): 1153−1158 doi: 10.1126/science.1137395
    [36]
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11): 780−782 doi: 10.1364/OL.19.000780
    [37]
    Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5): 339−340 doi: 10.1038/nmeth0510-339
    [38]
    Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11): 4258−4272 doi: 10.1529/biophysj.106.091116
    [39]
    Huang B, Jones SA, Brandenburg B, Zhuang X (2008a) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12): 1047−1052 doi: 10.1038/nmeth.1274
    [40]
    Huang B, Wang W, Bates M, Zhuang X (2008b) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864): 810−813 doi: 10.1126/science.1153529
    [41]
    Huang F, Schwartz SL, Byars JM, Lidke KA (2011) Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed Opt Express 2(5): 1377−1393 doi: 10.1364/BOE.2.001377
    [42]
    Huang F, Sirinakis G, Allgeyer ES, Schroeder LK, Duim WC, Kromann EB, Phan T, Rivera-Molina FE, Myers JR, Irnov I, Lessard M, Zhang Y, Handel MA, Jacobs-Wagner C, Lusk CP, Rothman JE, Toomre D, Booth MJ, Bewersdorf J (2016) Ultra-high resolution 3D imaging of whole cells. Cell 166(4): 1028−1040 doi: 10.1016/j.cell.2016.06.016
    [43]
    Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P (2018) Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36(5): 451−459 doi: 10.1038/nbt.4115
    [44]
    Jia S, Vaughan JC, Zhuang X (2014) Isotropic three-dimensional super-resolution imaging with a self-bending point spread function. Nat Photonics 8(4): 302−306 doi: 10.1038/nphoton.2014.13
    [45]
    Jouchet P, Cabriel C, Bourg N, Bardou M, Poüs C, Fort E, Lévêque-Fort S (2021) Nanometric axial localization of single fluorescent molecules with modulated excitation. Nat photonics 15(4): 297−304 doi: 10.1038/s41566-020-00749-9
    [46]
    Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6): 527−529 doi: 10.1038/nmeth.1211
    [47]
    Jungmann R, Avendaño MS, Dai M, Woehrstein JB, Agasti SS, Feiger Z, Rodal A, Yin P (2016) Quantitative super-resolution imaging with qPAINT. Nat Methods 13(5): 439−442 doi: 10.1038/nmeth.3804
    [48]
    Jungmann R, Avendaño MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat Methods 11(3): 313−318 doi: 10.1038/nmeth.2835
    [49]
    Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323): 580−584 doi: 10.1038/nature09621
    [50]
    Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Opt Lett 24(14): 954−956 doi: 10.1364/OL.24.000954
    [51]
    Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA 97(15): 8206−8210 doi: 10.1073/pnas.97.15.8206
    [52]
    Li D, Shao L, Chen B-C, Zhang X, Zhang M, Moses B, Milkie DE, Beach JR, Hammer JA, Pasham M (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349(6251): aab3500. https://doi.org/10.1126/science.aab3500
    [53]
    Li Y, Buglakova E, Zhang Y, Thevathasan JV, Bewersdorf J, Ries J (2020) Accurate 4Pi single-molecule localization using an experimental PSF model. Opt Lett 45(13): 3765−3768 doi: 10.1364/OL.397754
    [54]
    Li Y, Mund M, Hoess P, Deschamps J, Matti U, Nijmeijer B, Sabinina VJ, Ellenberg J, Schoen I, Ries J (2018) Real-time 3D single-molecule localization using experimental point spread functions. Nat Methods 15(5): 367−369 doi: 10.1038/nmeth.4661
    [55]
    Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2(12): 910−919 doi: 10.1038/nmeth817
    [56]
    Liu J, Wang Y, Goh WI, Goh H, Baird MA, Ruehland S, Teo S, Bate N, Critchley DR, Davidson MW (2015) Talin determines the nanoscale architecture of focal adhesions. Proc Natl Acad Sci USA 112(35): E4864−E4873 doi: 10.1073/pnas.1512025112
    [57]
    Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y (2014) Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space. Nat Commun 5(1): 1−8
    [58]
    Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J, Richter L, Cole F, Tinnefeld P, Stefani FD (2021) Pulsed Interleaved MINFLUX. Nano Lett 21(1): 840−846 doi: 10.1021/acs.nanolett.0c04600
    [59]
    McGorty R, Schnitzbauer J, Zhang W, Huang B (2014) Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt Lett 39(2): 275−278 doi: 10.1364/OL.39.000275
    [60]
    Min J, Holden SJ, Carlini L, Unser M, Manley S, Ye JC (2014) 3D high-density localization microscopy using hybrid astigmatic/biplane imaging and sparse image reconstruction. Biomed Opt Express 5(11): 3935−3948 doi: 10.1364/BOE.5.003935
    [61]
    Nieuwenhuizen RP, Lidke KA, Bates M, Puig DL, Grünwald D, Stallinga S, Rieger B (2013) Measuring image resolution in optical nanoscopy. Nat Methods 10(6): 557−562 doi: 10.1038/nmeth.2448
    [62]
    Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86(2): 1185−1200 doi: 10.1016/S0006-3495(04)74193-4
    [63]
    Olivier N, Keller D, Gönczy P, Manley S (2013) Resolution doubling in 3D-STORM imaging through improved buffers. PLoS One 8(7): e69004. https://doi.org/10.1371/journal.pone.0069004
    [64]
    Pan L, Yan R, Li W, Xu K (2018) Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton. Cell Rep 22(5): 1151−1158 doi: 10.1016/j.celrep.2017.12.107
    [65]
    Pan L, Zhang P, Hu F, Yan R, He M, Li W, Xu J, Xu K (2019) Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release. Adv Sci 6(18): 1900865. https://doi.org/10.1002/advs.201900865
    [66]
    Pape JK, Stephan T, Balzarotti F, Büchner R, Lange F, Riedel D, Jakobs S, Hell SW (2020) Multicolor 3D MINFLUX nanoscopy of mitochondrial MICOS proteins. Proc Natl Acad Sci USA 117(34): 20607−20614 doi: 10.1073/pnas.2009364117
    [67]
    Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73(5): 2782−2790 doi: 10.1016/S0006-3495(97)78307-3
    [68]
    Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner W (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci USA 106(9): 2995−2999 doi: 10.1073/pnas.0900245106
    [69]
    Przybylski A, Thiel B, Keller-Findeisen J, Stock B, Bates M (2017) Gpufit: an open-source toolkit for GPU-accelerated curve fitting. Sci Rep 7(1): 1−9 doi: 10.1038/s41598-016-0028-x
    [70]
    Quan T, Zeng S, Lu X (2010) Comparison of algorithms for localization of single fluorescent molecule in super resolution imaging. Chin J Lasers 37(11): 2714−2718 doi: 10.3788/CJL20103711.2714
    [71]
    Quirin S, Pavani SRP, Piestun R (2012) Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions. Proc Natl Acad Sci USA 109(3): 675−679 doi: 10.1073/pnas.1109011108
    [72]
    Reymond L, Ziegler J, Knapp C, Wang F-C, Huser T, Ruprecht V, Wieser S (2019) SIMPLE: structured illumination based point localization estimator with enhanced precision. Opt Express 27(17): 24578−24590 doi: 10.1364/OE.27.024578
    [73]
    Ries J, Udayar V, Soragni A, Hornemann S, Nilsson KPR, Riek R, Hock C, Ewers H, Aguzzi AA, Rajendran L (2013) Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem Neurosci 4(7): 1057−1061 doi: 10.1021/cn400091m
    [74]
    Rocha J, Corbitt J, Yan T, Richardson C, Gahlmann A (2019) Resolving cytosolic diffusive states in bacteria by single-molecule tracking. Biophys J 116(10): 1970−1983 doi: 10.1016/j.bpj.2019.03.039
    [75]
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3: 793−795 doi: 10.1038/nmeth929
    [76]
    Sahl SJ, Hell SW (2019) High-resolution 3D light microscopy with STED and RESOLFT. In:Bille JF (eds). High resolution imaging in microscopy and ophthalmology:new frontiers in biomedical optics. Cham (CH):Springer International Publishing. pp : 3−32
    [77]
    Saxena M, Eluru G, Gorthi SS (2015) Structured illumination microscopy. Adv Opt Photonics 7(2): 241−275 doi: 10.1364/AOP.7.000241
    [78]
    Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso MC, Agard DA, Gustafsson MG (2008) Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science 320(5881): 1332−1336 doi: 10.1126/science.1156947
    [79]
    Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J, Sahl SJ, Hell SW (2021) MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun 12(1): 1478. https://doi.org/10.1038/s41467-021-21652-z
    [80]
    Schnitzbauer J, Strauss MT, Schlichthaerle T, Schueder F, Jungmann R (2017) Super-resolution microscopy with DNA-PAINT. Nat Protoc 12(6): 1198−1228 doi: 10.1038/nprot.2017.024
    [81]
    Schoen I, Ries J, Klotzsch E, Ewers H, Vogel V (2011) Binding-activated localization microscopy of DNA structures. Nano Lett 11(9): 4008−4011 doi: 10.1021/nl2025954
    [82]
    Schroeder B, Jia S (2015) Frequency analysis of a self-bending point spread function for 3D localization-based optical microscopy. Opt Lett 40(13): 3189−3192 doi: 10.1364/OL.40.003189
    [83]
    Schueder F, Lara-Gutiérrez J, Beliveau BJ, Saka SK, Sasaki HM, Woehrstein JB, Strauss MT, Grabmayr H, Yin P, Jungmann R (2017) Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nat Commun 8(1): 2090. https://doi.org/10.1038/s41467-017-02028-8
    [84]
    Schueder F, Stein J, Stehr F, Auer A, Sperl B, Strauss MT, Schwille P, Jungmann R (2019) An order of magnitude faster DNA-PAINT imaging by optimized sequence design and buffer conditions. Nat Methods 16(11): 1101−1104 doi: 10.1038/s41592-019-0584-7
    [85]
    Semwogerere D, Weeks ER (2005) Confocal microscopy. Encyc Biomater Biomed Eng 23: 1−10
    [86]
    Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci USA 103(50): 18911−18916 doi: 10.1073/pnas.0609643104
    [87]
    Shechtman Y, Gustavsson A-K, Petrov PN, Dultz E, Lee MY, Weis K, Moerner W (2017) Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions. Biomed Opt Express 8(12): 5735−5748 doi: 10.1364/BOE.8.005735
    [88]
    Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner WE (2015) Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with Tetrapod point spread functions. Nano Lett 15(6): 4194−4199 doi: 10.1021/acs.nanolett.5b01396
    [89]
    Shim S-H, Xia C, Zhong G, Babcock HP, Vaughan JC, Huang B, Wang X, Xu C, Bi G-Q, Zhuang X (2012) Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35): 13978−13983 doi: 10.1073/pnas.1201882109
    [90]
    Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci USA 106(9): 3125−3130 doi: 10.1073/pnas.0813131106
    [91]
    Shtengel G, Wang Y, Zhang Z, Goh WI, Hess HF, Kanchanawong P (2014) Imaging cellular ultrastructure by PALM, iPALM, and correlative iPALM-EM. Methods Cell Biol 123: 273−294
    [92]
    Smith CS, Joseph N, Rieger B, Lidke KA (2010) Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat Methods 7(5): 373−375 doi: 10.1038/nmeth.1449
    [93]
    Song K-H, Zhang Y, Wang G, Sun C, Zhang HF (2019) Three-dimensional biplane spectroscopic single-molecule localization microscopy. Optica 6(6): 709−715 doi: 10.1364/OPTICA.6.000709
    [94]
    Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300(5616): 82−86 doi: 10.1126/science.1082160
    [95]
    Strauss S, Jungmann R (2020) Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat Methods 17(8): 789−791 doi: 10.1038/s41592-020-0869-x
    [96]
    Szczurek A, Klewes L, Xing J, Gourram A, Birk U, Knecht H, Dobrucki JW, Mai S, Cremer C (2017) Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Res 45(8): e56−e56
    [97]
    Thompson MA, Casolari JM, Badieirostami M, Brown PO, Moerner W (2010) Three-dimensional tracking of single mRNA particles in Saccharomyces cerevisiae using a double-helix point spread function. Proc Natl Acad Sci USA 107(42): 17864−17871 doi: 10.1073/pnas.1012868107
    [98]
    Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5): 2775−2783 doi: 10.1016/S0006-3495(02)75618-X
    [99]
    Van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M, Sauer M (2011) Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat Protocols 6(7): 991−1009 doi: 10.1038/nprot.2011.336
    [100]
    Wang J, Allgeyer ES, Sirinakis G, Zhang Y, Hu K, Lessard MD, Li Y, Diekmann R, Phillips MA, Dobbie IM (2021) Implementation of a 4Pi-SMS super-resolution microscope. Nat Protoc 16(2): 677−727 doi: 10.1038/s41596-020-00428-7
    [101]
    Wang S, Ding M, Chen X, Chang L, Sun Y (2017) Development of bimolecular fluorescence complementation using rsEGFP2 for detection and super-resolution imaging of protein-protein interactions in live cells. Biomed Opt Express 8(6): 3119−3131 doi: 10.1364/BOE.8.003119
    [102]
    Watanabe S, Ebeling C, Oikonomou G, Shaham S, Gerton J, Jorgensen E (2011) Three-dimensional reconstruction of actin in a sensory glial cell using bi-plane PALM. Microsc Microanal 17(S2): 16−17 doi: 10.1017/S143192761100095X
    [103]
    Westphal V, Rizzoli SO, Lauterbach MA, Kamin D, Jahn R, Hell SW (2008) Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320(5873): 246−249 doi: 10.1126/science.1154228
    [104]
    Winterflood CM, Platonova E, Albrecht D, Ewers H (2015) Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging. Biophys J 109(1): 3−6 doi: 10.1016/j.bpj.2015.05.026
    [105]
    Xu K, Babcock HP, Zhuang X (2012) Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton. Nat Methods 9(2): 185−188 doi: 10.1038/nmeth.1841
    [106]
    Yan Q, Cai M, Zhou L, Xu H, Shi Y, Sun J, Jiang J, Gao J, Wang H (2019) Using an RNA aptamer probe for super-resolution imaging of native EGFR. Nanoscale Adv 1(1): 291−298 doi: 10.1039/C8NA00143J
    [107]
    Zhang Y, Gu L, Chang H, Ji W, Chen Y, Zhang M, Yang L, Liu B, Chen L, Xu T (2013) Ultrafast, accurate, and robust localization of anisotropic dipoles. Protein Cell 4(8): 598−606 doi: 10.1007/s13238-013-3904-1
    [108]
    Zhang Y, Schroeder LK, Lessard MD, Kidd P, Chung J, Song Y, Benedetti L, Li Y, Ries J, Grimm JB (2020) Nanoscale subcellular architecture revealed by multicolor three-dimensional salvaged fluorescence imaging. Nat Methods 17(2): 225−231 doi: 10.1038/s41592-019-0676-4
    [109]
    Zhou L, Gao J, Wang H, Shi Y, Xu H, Yan Q, Jing Y, Jiang J, Cai M, Wang H (2020a) Correlative dual-color dSTORM/AFM reveals protein clusters at the cytoplasmic side of human bronchial epithelium membranes. Nanoscale 12(18): 9950−9957 doi: 10.1039/C9NR10931E
    [110]
    Zhou Y, Zammit P, Zickus V, Taylor JM, Harvey AR (2020b) Twin-airy point-spread function for extended-volume particle localization. Phys Rev Lett 124(19): 198104. https://doi.org/10.1103/PhysRevLett.124.198104
    [111]
    Zhu L, Zhang W, Elnatan D, Huang B (2012) Faster STORM using compressed sensing. Nat Methods 9(7): 721−723 doi: 10.1038/nmeth.1978
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(2)

    Article Metrics

    Article views (1487) PDF downloads(110) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return