Volume 7 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Yanling You, Zhongmin Tang, Han Lin, Jianlin Shi. Emerging two-dimensional material nanozymes for theranostic nanomedicine[J]. Biophysics Reports, 2021, 7(3): 159-172. doi: 10.52601/bpr.2021.210011
Citation: Yanling You, Zhongmin Tang, Han Lin, Jianlin Shi. Emerging two-dimensional material nanozymes for theranostic nanomedicine[J]. Biophysics Reports, 2021, 7(3): 159-172. doi: 10.52601/bpr.2021.210011

Emerging two-dimensional material nanozymes for theranostic nanomedicine

doi: 10.52601/bpr.2021.210011
Funds:  We greatly acknowledge the National Natural Science Foundation of China (52002391 and 21835007), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-LY-SLH029), China Postdoctoral Science Foundation (2019M660098), and Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (SKL201906).
More Information
  • Nanomaterials-based artificial enzymes (nanozymes) with valuable enzyme-like catalytic properties have been booming during the past few years. Promoted by the advances in biological medicine and nanotechnology, nanozymes possess the potential to serve as an emerging agent for biosensing, immunoassays, detection and diagnosis, catalytic therapeutics, and other applications in the biomedicine field. Two-dimensional (2D) nanomaterials are of considerable interest in biomedical applications due to their ultrathin layered structure and unique physiochemical properties. Inspired by the diversified catalytic performance of 2D nanomaterials, scientists extensively have developed 2D materials as bioactive nanozymes for theranostic nanomedicine. Here, recent advances in enzyme-like 2D nanomaterials design and construction are comprehensively presented. Additionally, we exhibit that, with the synergistic effect of catalytic activities and desirable physicochemical performances, 2D nanozymes can serve as versatile platforms with extensive applications from target detection to in vivo theranostic. It is believed that such promising alternatives towards natural enzymes will be of vital significance in the field of nanotechnology and biomedicine.
  • loading
  • [1]
    Bao Q, Hu P, Xu Y, Cheng T, Wei C, Pan L, Shi J (2018) Simultaneous blood–brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano 12(7): 6794−6805 doi: 10.1021/acsnano.8b01994
    [2]
    Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43(19): 6727−6749 doi: 10.1039/C4CS00138A
    [3]
    Boutorine AS, Takasugi M, Hélène C, Tokuyama H, Isobe H, Nakamura E (1995) Fullerene–oligonucleotide conjugates: photoinduced sequence-specific DNA cleavage. Angew Chem Int Ed Engl 33(23‐24): 2462−2465
    [4]
    Breslow R, Overman LE (1970) "Artificial enzyme" combining a metal catalytic group and a hydrophobic binding cavity. J Am Chem Soc 92(4): 1075−1077 doi: 10.1021/ja00707a062
    [5]
    Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu Y-N, Guo S (2018) Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30(3): 1703458. https://doi.org/10.1002/adma.201703458
    [6]
    Cheng L, Wang X, Gong F, Liu T, Liu Z (2020) 2D nanomaterials for cancer theranostic applications. Adv Mater 32(13): 1902333. https://doi.org/10.1002/adma.201902333
    [7]
    Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin J-J (2016) Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano 10(9): 8690−8699 doi: 10.1021/acsnano.6b04061
    [8]
    Cui R, Han Z, Zhu J-J (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chemistry 17(34): 9377−9384 doi: 10.1002/chem.201100478
    [9]
    Deng D, Novoselov KS, Fu Q, Zheng N, Tian Z, Bao X (2016) Catalysis with two-dimensional materials and their heterostructures. Nat Nanotechnol 11(3): 218−230 doi: 10.1038/nnano.2015.340
    [10]
    Diaz RS, Shytaj IL, Giron LB, Obermaier B, Della Libera E Jr., Galinskas J, Dias D, Hunter J, Janini M, Gosuen G, Ferreira PA, Sucupira MC, Maricato J, Fackler O, Lusic M, Savarino A (2019) Potential impact of the antirheumatic agent auranofin on proviral HIV-1 DNA in individuals under intensified antiretroviral therapy: results from a randomised clinical trial. Int J Antimicrob Agents 54(5): 592−600 doi: 10.1016/j.ijantimicag.2019.08.001
    [11]
    Dill JA, Lee KM, Mellinger KH, Bates DJ, Burka LT, Roycroft JH (2004) Lung deposition and clearance of inhaled vanadium pentoxide in chronically exposed F344 rats and B6C3F1 mice. Toxicol Sci 77(1): 6−18
    [12]
    Feng D, Gu ZY, Li JR, Jiang HL, Wei Z, Zhou HC (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed Engl 51(41): 10307−10310 doi: 10.1002/anie.201204475
    [13]
    Feng W, Han X, Hu H, Chang M, Ding L, Xiang H, Chen Y, Li Y (2021) 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun 12(1): 2203. https://doi.org/10.1038/s41467-021-22278-x
    [14]
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9): 577−583 doi: 10.1038/nnano.2007.260
    [15]
    Gao M, Wang Z, Zheng H, Wang L, Xu S, Liu X, Li W, Pan Y, Wang W, Cai X, Wu Ra, Gao X, Li R (2020) Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew Chem Int Ed Engl 59(9): 3618−3623 doi: 10.1002/anie.201913035
    [16]
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3): 183−191 doi: 10.1038/nmat1849
    [17]
    Ghosh S, Roy P, Karmodak N, Jemmis ED, Mugesh G (2018) Nanoisozymes: Crystal-facet-dependent enzyme-mimetic activity of V(2)O(5) nanomaterials. Angew Chem Int Ed Engl 57(17): 4510−4515 doi: 10.1002/anie.201800681
    [18]
    Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49(19): 3280−3294 doi: 10.1002/anie.200904359
    [19]
    Gopal R, Kathirgamanathan P, Ravi G, Elangovan T, Kumar B, Manivannan N, Kasinathan K, Arjunkumar B (2020) Quantum confinement effect of 2D nanomaterials. DOI: 10.5772/intechopen.90140
    [20]
    Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40(5): 2644−2672 doi: 10.1039/c0cs00079e
    [21]
    Haque F, Daeneke T, Kalantar-zadeh K, Ou JZ (2017) Two-dimensional transition metal oxide and chalcogenide-based photocatalysts. Nanomicro Lett 10(2): 23. https://doi.org/10.1007/s40820-017-0176-y
    [22]
    Hou J, Wang H, Ge Z, Zuo T, Chen Q, Liu X, Mou S, Fan C, Xie Y, Wang L (2020) Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett 20(2): 1447−1454 doi: 10.1021/acs.nanolett.9b05218
    [23]
    Huang X, Liu X, Luo Q, Liu J, Shen J (2011) Artificial selenoenzymes: designed and redesigned. Chem Soc Rev 40(3): 1171−1184 doi: 10.1039/C0CS00046A
    [24]
    Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32): 1700102. https://doi.org/10.1002/adma.201700102
    [25]
    Jiang D, Ge Z, Im H-J, England CG, Ni D, Hou J, Zhang L, Kutyreff CJ, Yan Y, Liu Y, Cho SY, Engle JW, Shi J, Huang P, Fan C, Yan H, Cai W (2018) DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng 2(11): 865−877 doi: 10.1038/s41551-018-0317-8
    [26]
    Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48(14): 3683−3704 doi: 10.1039/C8CS00718G
    [27]
    Jun S, Saxena S (2007) The aggregated state of amyloid-β peptide in vitro depends on Cu2+ ion concentration. Angew Chem Int Ed Engl 46(21): 3959−3961 doi: 10.1002/anie.200700318
    [28]
    Kim J-H, Heller DA, Jin H, Barone PW, Song C, Zhang J, Trudel LJ, Wogan GN, Tannenbaum SR, Strano MS (2009) The rational design of nitric oxide selectivity in single-walled carbon nanotube near-infrared fluorescence sensors for biological detection. Nat Chem 1(6): 473−481 doi: 10.1038/nchem.332
    [29]
    Korschelt K, Tahir MN, Tremel W (2018) A Step into the future: applications of nanoparticle enzyme mimics. Chemistry 24(39): 9703−9713 doi: 10.1002/chem.201800384
    [30]
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042): 162−163 doi: 10.1038/318162a0
    [31]
    Kwon HJ, Kim D, Seo K, Kim YG, Han SI, Kang T, Soh M, Hyeon T (2018) Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson's disease. Angew Chem Int Ed Engl 57(30): 9408−9412 doi: 10.1002/anie.201805052
    [32]
    Lee E, Yoon YS, Kim DJ (2018) Two-dimensional transition metal dichalcogenides and metal oxide hybrids for gas sensing. Acs Sensors 3(10): 2045−2060 doi: 10.1021/acssensors.8b01077
    [33]
    Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8): 2190−2200 doi: 10.1021/acs.accounts.9b00140
    [34]
    Lin H, Chen Y, Shi J (2018a) Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci 5(10): 1800518. https://doi.org/10.1002/advs.201800518
    [35]
    Lin H, Chen Y, Shi J (2018b) Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem Soc Rev 47(6): 1938−1958 doi: 10.1039/C7CS00471K
    [36]
    Lin Y, Ren J, Qu X (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res 47(4): 1097−1105 doi: 10.1021/ar400250z
    [37]
    Liu X-L, Dong X, Yang S-C, Lai X, Liu H-J, Gao Y, Feng H-Y, Zhu M-H, Yuan Y, Lu Q, Lovell JF, Chen H-Z, Fang C (2021) Biomimetic liposomal nanoplatinum for targeted cancer chemophototherapy. Adv Sci 8(8): 2003679. https://doi.org/10.1002/advs.202003679
    [38]
    Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C-W, Liu Q, Lin Y-W, Du Y, Butch CJ, Wei H (2020) Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv 6(29): eabb2695. https://doi.org/10.1126/sciadv.abb2695
    [39]
    Lu Y, Yeung N, Sieracki N, Marshall NM (2009) Design of functional metalloproteins. Nature 460(7257): 855−862 doi: 10.1038/nature08304
    [40]
    Manea F, Houillon FB, Pasquato L, Scrimin P (2004) Nanozymes: gold-nanoparticle-based transphosphorylation catalysts. Angew Chem Int Ed Engl 43(45): 6165−6169 doi: 10.1002/anie.200460649
    [41]
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. Nat Rev Mater 2(8): 17033. https://doi.org/10.1038/natrevmats.2017.33
    [42]
    Miao Z, Huang D, Wang Y, Li W-J, Fan L, Wang J, Ma Y, Zhao Q, Zha Z (2020) Safe-by-design exfoliation of niobium diselenide atomic crystals as a theory-oriented 2D nanoagent from anti-inflammation to antitumor. Adv Funct Mater 30(40): 2001593. https://doi.org/10.1002/adfm.202001593
    [43]
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696): 666−669 doi: 10.1126/science.1102896
    [44]
    Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97: 55−74 doi: 10.1016/j.ejmech.2015.04.040
    [45]
    Qin M, Cao Z, Wen J, Yu Q, Liu C, Wang F, Zhang J, Yang F, Li Y, Fishbein G, Yan S, Xu B, Hou Y, Ning Z, Nie K, Jiang N, Liu Z, Wu J, Yu Y, Li H, Zheng H, Li J, Jin W, Pang S, Wang S, Chen J, Gan Z, He Z, Lu Y (2020) An antioxidant enzyme therapeutic for COVID-19. Adv Mater 32(43): 2004901. https://doi.org/10.1002/adma.202004901
    [46]
    Ren X, Huo M, Wang M, Lin H, Zhang X, Yin J, Chen Y, Chen H (2019) Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano 13(6): 6438−6454 doi: 10.1021/acsnano.8b09327
    [47]
    Shan J, Yang K, Xiu W, Qiu Q, Dai S, Yuwen L, Weng L, Teng Z, Wang L (2020) Cu2MoS4 nanozyme with NIR-II light enhanced catalytic activity for efficient eradication of multidrug-resistant bacteria. Small 16(40): 2001099. https://doi.org/10.1002/smll.202001099
    [48]
    Shan JY, Li X, Yang KL, Xiu WJ, Wen QR, Zhang YQ, Yuwen LH, Weng LX, Teng ZG, Wang LH (2019) Efficient bacteria killing by Cu2WS4 nanocrystals with enzyme-like properties and bacteria-binding ability. ACS Nano 13(12): 13797−13808 doi: 10.1021/acsnano.9b03868
    [49]
    Shytaj IL, Lucic B, Forcato M, Penzo C, Billingsley J, Laketa V, Bosinger S, Stanic M, Gregoretti F, Antonelli L, Oliva G, Frese CK, Trifunovic A, Galy B, Eibl C, Silvestri G, Bicciato S, Savarino A, Lusic M (2020) Alterations of redox and iron metabolism accompany the development of HIV latency. EMBO J 39(9): e102209. https://doi.org/10.15252/embj.2019102209
    [50]
    Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biology 4: 180−183 doi: 10.1016/j.redox.2015.01.002
    [51]
    Singh N, Savanur MA, Srivastava S, D'Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson's disease model. Angew Chem Int Ed Engl 56(45): 14267−14271 doi: 10.1002/anie.201708573
    [52]
    Singh S, Ghosh S, Pal VK, Munshi M, Shekar P, Narasimha Murthy DT, Mugesh G, Singh A (2021) Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Mol Med 13(5): e13314. https://doi.org/10.15252/emmm.202013314
    [53]
    Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19): 2206−2210 doi: 10.1002/adma.200903783
    [54]
    Spinelli Jessica B, Yoon H, Ringel A, Jeanfavre S, Clish C, Haigis M (2017) Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358(6365): 941−946 doi: 10.1126/science.aam9305
    [55]
    Sun X, Guo S, Liu Y, Sun S (2012) Dumbbell-like PtPd–Fe3O4 nanoparticles for enhanced electrochemical detection of H2O2. Nano Lett 12(9): 4859−4863 doi: 10.1021/nl302358e
    [56]
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930): 1029−1033 doi: 10.1126/science.1160809
    [57]
    Vernekar AA, Sinha D, Srivastava S, Paramasivam PU, D’Silva P, Mugesh G (2014) An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat Commun 5(1): 5301. https://doi.org/10.1038/ncomms6301
    [58]
    Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y (2015) Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 137(35): 11376−11382 doi: 10.1021/jacs.5b06025
    [59]
    Wang J, Cui X, Li H, Xiao J, Yang J, Mu X, Liu H, Sun Y-M, Xue X, Liu C, Zhang X-D, Deng D, Bao X (2018) Highly efficient catalytic scavenging of oxygen free radicals with graphene-encapsulated metal nanoshields. Nano Res 11(5): 2821−2835 doi: 10.1007/s12274-017-1912-9
    [60]
    Wang L, Zhang Y, Li Y, Chen J, Lin W (2021) Recent advances in engineered nanomaterials for acute kidney injury theranostics. Nano Res 14(4): 920−933 doi: 10.1007/s12274-020-3067-3
    [61]
    Wang X, Cheng L (2019) Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. Nanoscale 11(34): 15685−15708 doi: 10.1039/C9NR04044G
    [62]
    Wang Y, Zhao M, Ping J, Chen B, Cao X, Huang Y, Tan C, Ma Q, Wu S, Yu Y, Lu Q, Chen J, Zhao W, Ying Y, Zhang H (2016) Bioinspired design of ultrathin 2D bimetallic metal–organic-framework nanosheets used as biomimetic enzymes. Adv Mater 28(21): 4149−4155 doi: 10.1002/adma.201600108
    [63]
    Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14): 6060−6093 doi: 10.1039/c3cs35486e
    [64]
    Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, Zhao X, Miao L, Wei H (2021) Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal–organic framework nanozyme for therapy. Angew Chem Int Ed Engl 60(3): 1227−1234 doi: 10.1002/anie.202010714
    [65]
    Wulff G, Liu J (2012) Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Acc Chem Res 45(2): 239−247 doi: 10.1021/ar200146m
    [66]
    Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, Tian L, Jan SU, Boddula R, Guo B, Liu Q, Gong JR (2019) Antibacterial carbon-based nanomaterials. Adv Mater 31(45): 1804838. https://doi.org/10.1002/adma.201804838
    [67]
    Xu B, Wang H, Wang W, Gao L, Li S, Pan X, Wang H, Yang H, Meng X, Wu Q, Zheng L, Chen S, Shi X, Fan K, Yan X, Liu H (2019) A single-atom nanozyme for wound disinfection applications. Angew Chem Int Ed Engl 58(15): 4911−4916 doi: 10.1002/anie.201813994
    [68]
    Yang B, Chen Y, Shi J (2019) Nanocatalytic medicine. Adv Mater 31(39): 1901778. https://doi.org/10.1002/adma.201901778
    [69]
    Yim D, Kim JE, Kim H-I, Yang J-K, Kang T-W, Nam J, Han SH, Jun B, Lee CH, Lee SU, Kim JW, Kim J-H (2018) Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 14(16): 1800026. https://doi.org/10.1002/smll.201800026
    [70]
    Yim D, Lee D-E, So Y, Choi C, Son W, Jang K, Yang C-S, Kim J-H (2020) Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano 14(8): 10324−10336 doi: 10.1021/acsnano.0c03807
    [71]
    Zhang C, Wang X, Du J, Gu Z, Zhao Y (2021) Reactive oxygen species-regulating strategies based on nanomaterials for disease treatment. Adv Sci 8(3): 2002797. https://doi.org/10.1002/advs.202002797
    [72]
    Zhang H (2015) Ultrathin two-dimensional nanomaterials. ACS Nano 9(10): 9451−9469 doi: 10.1021/acsnano.5b05040
    [73]
    Zhang X-D, Zhang J, Wang J, Yang J, Chen J, Shen X, Deng J, Deng D, Long W, Sun Y-M, Liu C, Li M (2016) Highly catalytic nanodots with renal clearance for radiation protection. ACS Nano 10(4): 4511−4519 doi: 10.1021/acsnano.6b00321
    [74]
    Zhou Z, Ni K, Deng H, Chen X (2020) Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Delivery Rev 158: 73−90 doi: 10.1016/j.addr.2020.06.006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (2655) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return