Volume 7 Issue 3
Jun.  2021
Turn off MathJax
Article Contents
Sara Pandidan, Adam Mechler. Latest developments on the mechanism of action of membrane disrupting peptides[J]. Biophysics Reports, 2021, 7(3): 173-184. doi: 10.52601/bpr.2021.200037
Citation: Sara Pandidan, Adam Mechler. Latest developments on the mechanism of action of membrane disrupting peptides[J]. Biophysics Reports, 2021, 7(3): 173-184. doi: 10.52601/bpr.2021.200037

Latest developments on the mechanism of action of membrane disrupting peptides

doi: 10.52601/bpr.2021.200037
More Information
  • Corresponding author: A.Mechler@latrobe.edu.au (A.Mechler)
  • Received Date: 01 August 2020
  • Accepted Date: 19 March 2021
  • Available Online: 07 July 2021
  • Publish Date: 30 June 2021
  • Antimicrobial peptides (AMPs) are integral components of the innate immune defence system of all complex organisms including plants, insects, and mammals. They have wide range of antibacterial, antifungal, antiviral, and even anticancer activities, therefore AMPs are attractive candidates for developing novel therapeutic approaches. Cationic α-helical membrane disrupting peptides are perhaps the most widely studied subclass of AMPs due to their common fundamental characteristics that allow for detailed structure-function analysis and therefore offer a promising solution to the threat of multidrug resistant strains of bacteria. The majority of the studies of AMP activity focused on the biological and biophysical aspects of membrane disruption; the understanding of the molecular mechanism of action from the physicochemical point of view forms a relatively small subfield. This review will provide an overview of these works, focusing on the empirical and thermodynamic models of AMP action.
  • loading
  • [1]
    Afonin S, Grage SL, Ieronimo M, Wadhwani P, Ulrich AS (2008) Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy. J Am Chem Soc 130(49): 16512−16514 doi: 10.1021/ja803156d
    [2]
    Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12): 1543−1575 doi: 10.3390/ph6121543
    [3]
    Baumann G, Mueller P (1974) A molecular model of membrane excitability. J Supramol Struct 2(5‐6): 538−557
    [4]
    Bechinger B, Lohner K (2006) Detergent-like actions of linear amphipathic cationic antimicrobial peptides. BBA-Biomembranes 1758(9): 1529−1539 doi: 10.1016/j.bbamem.2006.07.001
    [5]
    Boheim G (1974) Statistical analysis of alamethicin channels in black lipid membranes. J Membr Biol 19(1): 277−303 doi: 10.1007/BF01869983
    [6]
    Boheim G, Benz R (1978) Charge-pulse relaxation studies with lipid bilayer membranes modified by alamethicin. BBA-Biomembranes 507(2): 262−270 doi: 10.1016/0005-2736(78)90421-2
    [7]
    Boheim G, Hanke W, Jung G (1983) Alamethicin pore formation: voltage-dependent flip-flop of α-helix dipoles. Biophys Struct Mech 9(3): 181−191 doi: 10.1007/BF00537815
    [8]
    Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3): 238−250 doi: 10.1038/nrmicro1098
    [9]
    Cafiso D (1994) Alamethicin: a peptide model for voltage gating and protein-membrane interactions. Annu Rev Biophys Biomol Struct 23(1): 141−165 doi: 10.1146/annurev.bb.23.060194.001041
    [10]
    Cantisani M, Finamore E, Mignogna E, Falanga A, Nicoletti GF, Pedone C, Morelli G, Leone M, Galdiero M, Galdiero S (2014) Structural insights into and activity analysis of the antimicrobial peptide myxinidin. Antimicrob Agents Chemother 58(9): 5280−5290 doi: 10.1128/AAC.02395-14
    [11]
    Chen F-Y, Lee M-T, Huang HW (2002) Sigmoidal concentration dependence of antimicrobial peptide activities: a case study on alamethicin. Biophys J 82(2): 908−914 doi: 10.1016/S0006-3495(02)75452-0
    [12]
    Chen F-Y, Lee M-T, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys J 84(6): 3751−3758 doi: 10.1016/S0006-3495(03)75103-0
    [13]
    Chen Y, Guarnieri MT, Vasil AI, Vasil ML, Mant CT, Hodges RS (2007) Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother 51(4): 1398−1406 doi: 10.1128/AAC.00925-06
    [14]
    Cohen ML (1992) Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 257(5073): 1050−1055 doi: 10.1126/science.257.5073.1050
    [15]
    Conlon JM, Sonnevend A (2010) Antimicrobial peptides in frog skin secretions. In: Antimicrobial Peptides. Springer. pp 3-14
    [16]
    Cudic M, Otvos Jr L (2002) Intracellular targets of antibacterial peptides. Curr Drug Targets 3(2): 101−106 doi: 10.2174/1389450024605445
    [17]
    Cunningham BC, Wells JA (1989) High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244(4908): 1081−1085 doi: 10.1126/science.2471267
    [18]
    Darveau RP, Cunningham M, Seachord CL, Cassiano-Clough L, Cosand WL, Blake J, Watkins CS (1991) Beta-lactam antibiotics potentiate magainin 2 antimicrobial activity in vitro and in vivo. Antimicrob Agents Chemother 35(6): 1153−1159 doi: 10.1128/AAC.35.6.1153
    [19]
    Dathe M, Nikolenko H, Meyer J, Beyermann M, Bienert M (2001) Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett 501(2-3): 146−150 doi: 10.1016/S0014-5793(01)02648-5
    [20]
    Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. BBA-Biomembranes 1462(1-2): 71−87 doi: 10.1016/S0005-2736(99)00201-1
    [21]
    Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15(21): 2377−2392 doi: 10.2174/138161209788682325
    [22]
    Dubos RJ (1939) Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. J Exp Med 70(1): 1−10
    [23]
    Dutta P, Das S (2016) Mammalian antimicrobial peptides: promising therapeutic targets against infection and chronic inflammation. Curr Top Med Chem 16(1): 99−129
    [24]
    Ennaceur SM, Hicks MR, Pridmore CJ, Dafforn TR, Rodger A, Sanderson JM (2009) Peptide adsorption to lipid bilayers: slow processes revealed by linear dichroism spectroscopy. Biophys J 96(4): 1399−1407 doi: 10.1016/j.bpj.2008.10.039
    [25]
    Epand RM (2016) Host defense peptides and their potential as therapeutic agents. Springer
    [26]
    Estep T, Mountcastle D, Biltonen R, Thompson T (1978) Studies on the anomalous thermotropic behavior of aqueous dispersions of dipalmitoylphosphatidylcholine-cholesterol mixtures. Biochemistry 17(10): 1984−1989 doi: 10.1021/bi00603a029
    [27]
    Fernandez DI, Le Brun AP, Whitwell TC, Sani M-A, James M, Separovic F (2012) The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys Chem Chem Phys 14(45): 15739−15751 doi: 10.1039/c2cp43099a
    [28]
    Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31: 379−382 doi: 10.1038/nbt.2572
    [29]
    Fuertes G, Giménez D, Esteban-Martín S, Sánchez-Munoz OL, Salgado J (2011) A lipocentric view of peptide-induced pores. Eur Biophys J 40(4): 399−415 doi: 10.1007/s00249-011-0693-4
    [30]
    Ganz T, Lehrer RI (1995) Defensins. Pharmacol Therapeut 66(2): 191−205 doi: 10.1016/0163-7258(94)00076-F
    [31]
    Gazit E, Boman A, Boman HG, Shai Y (1995) Interaction of the mammalian antibacterial peptide cecropin P1 with phospholipid vesicles. Biochemistry 34(36): 11479−11488 doi: 10.1021/bi00036a021
    [32]
    Gazit E, Miller IR, Biggin PC, Sansom MS, Shai Y (1996) Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol 258(5): 860−870 doi: 10.1006/jmbi.1996.0293
    [33]
    Goyal RK, Mattoo AK (2016) Plant antimicrobial peptides. In: Host defense peptides and their potential as therapeutic agents. Springer. pp 111−136
    [34]
    Guha S, Ghimire J, Wu E, Wimley WC (2019) Mechanistic landscape of membrane-permeabilizing peptides. Chem Rev 119(9): 6040−6085 doi: 10.1021/acs.chemrev.8b00520
    [35]
    Hale JD, Hancock RE (2007) Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect 5(6): 951−959 doi: 10.1586/14787210.5.6.951
    [36]
    Hall J (1975) Toward a molecular understanding of excitability. Alamethicin in black lipid films. Biophys J 15(9): 934−939
    [37]
    Hall K, Lee T-H, Mechler AI, Swann MJ, Aguilar M-I (2014) Real-time measurement of membrane conformational states induced by antimicrobial peptides: balance between recovery and lysis. Sci Rep 4: 5479. https://doi.org/10.1038/srep05479
    [38]
    Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8(9): 402−410 doi: 10.1016/S0966-842X(00)01823-0
    [39]
    Hancock RE, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12): 1551−1557 doi: 10.1038/nbt1267
    [40]
    Hartmann M, Berditsch M, Hawecker J, Ardakani MF, Gerthsen D, Ulrich AS (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother 54(8): 3132−3142 doi: 10.1128/AAC.00124-10
    [41]
    Hawkins RE, Russell SJ, Baier M, Winter G (1993) The contribution of contact and non-contact residues of antibody in the affinity of binding to antigen: the interaction of mutant D1. 3 antibodies with lysozyme. J Mol Biol 234(4): 958−964 doi: 10.1006/jmbi.1993.1650
    [42]
    He K, Ludtke SJ, Huang HW, Worcester DL (1995) Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34(48): 15614−15618 doi: 10.1021/bi00048a002
    [43]
    Hirsh DJ, Hammer J, Maloy WL, Blazyk J, Schaefer J (1996) Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Biochemistry 35(39): 12733−12741 doi: 10.1021/bi961468a
    [44]
    Hirst DJ, Lee T-H, Swann MJ, Aguilar M-I (2013) Combined mass and structural kinetic analysis of multistate antimicrobial peptide–membrane interactions. Anal Chem 85(19): 9296−9304 doi: 10.1021/ac402148v
    [45]
    Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. BBA-Biomembranes 1778(2): 357−375 doi: 10.1016/j.bbamem.2007.11.008
    [46]
    Hristova K, Selsted ME, White SH (1997) Critical role of lipid composition in membrane permeabilization by rabbit neutrophil defensins. J Biol Chem 272(39): 24224−24233 doi: 10.1074/jbc.272.39.24224
    [47]
    Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39(29): 8347−8352 doi: 10.1021/bi000946l
    [48]
    Huang HW (2006) Molecular mechanism of antimicrobial peptides: the origin of cooperativity. BBA-Biomembranes 1758(9): 1292−1302 doi: 10.1016/j.bbamem.2006.02.001
    [49]
    Huang HW (2009) Free energies of molecular bound states in lipid bilayers: lethal concentrations of antimicrobial peptides. Biophys J 96(8): 3263−3272 doi: 10.1016/j.bpj.2009.01.030
    [50]
    Huang HW, Chen F-Y, Lee M-T (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92(19): 198304. https://doi.org/10.1103/PhysRevLett.92.198304
    [51]
    Huang Y, Huang J, Chen Y (2010) Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell 1(2): 143−152 doi: 10.1007/s13238-010-0004-3
    [52]
    Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37(12): 4288−4298 doi: 10.1021/bi972323m
    [53]
    Jacobs RE, White SH (1989) The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. Biochemistry 28(8): 3421−3437 doi: 10.1021/bi00434a042
    [54]
    Kabelka I, Vacha R (2015) Optimal conditions for opening of membrane pore by amphiphilic peptides. J Chem Phys 143(24): 243115. https://doi.org/10.1063/1.4933229
    [55]
    Karal MAS, Alam JM, Takahashi T, Levadny V, Yamazaki M (2015) Stretch-activated pore of the antimicrobial peptide, magainin 2. Langmuir 31(11): 3391−3401 doi: 10.1021/la503318z
    [56]
    Karatekin E, Sandre O, Guitouni H, Borghi N, Puech P-H, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: line tension and transport. Biophys J 84(3): 1734−1749 doi: 10.1016/S0006-3495(03)74981-9
    [57]
    Khara JS, Wang Y, Ke XY, Liu S, Newton SM, Langford PR, Yang YY, Ee PL (2014) Anti-mycobacterial activities of synthetic cationic alpha-helical peptides and their synergism with rifampicin. Biomaterials 35(6): 2032−2038 doi: 10.1016/j.biomaterials.2013.11.035
    [58]
    Kim C, Spano J, Park E-K, Wi S (2009) Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3. BBA-Biomembranes 1788(7): 1482−1496 doi: 10.1016/j.bbamem.2009.04.017
    [59]
    Klotman ME, Chang TL (2006) Defensins in innate antiviral immunity. Nat Rev Immunol 6(6): 447−456 doi: 10.1038/nri1860
    [60]
    Kumar P, Kizhakkedathu JN, Straus SK (2018) Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8(1): 4. https://doi.org/10.3390/biom8010004
    [61]
    Lazaridis T, He Y, Prieto L (2013) Membrane interactions and pore formation by the antimicrobial peptide protegrin. Biophys J 104(3): 633−642 doi: 10.1016/j.bpj.2012.12.038
    [62]
    Lee M-T, Chen F-Y, Huang HW (2004) Energetics of pore formation induced by membrane active peptides. Biochemistry 43(12): 3590−3599 doi: 10.1021/bi036153r
    [63]
    Lee T-H, Hall K, Mechler A, Martin L, Popplewell J, Ronan G, Aguilar M-I (2009) Molecular imaging and orientational changes of antimicrobial peptides in membranes. In: Peptides for Youth. Springer. pp 313−315
    [64]
    Lee T-H, Heng C, Separovic F, Aguilar M-I (2014) Comparison of reversible membrane destabilisation induced by antimicrobial peptides derived from Australian frogs. BBA-Biomembranes 1838(9): 2205−2215 doi: 10.1016/j.bbamem.2014.02.017
    [65]
    Lehrer R, Barton A, Daher KA, Harwig S, Ganz T, Selsted ME (1989) Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J Clin Invest 84(2): 553−561
    [66]
    Livermore D (2004) The need for new antibiotics. Clin Microbiol Infect 10: 1−9
    [67]
    Ludtke S, He K, Huang H (1995) Membrane thinning caused by magainin 2. Biochemistry 34(51): 16764−16769 doi: 10.1021/bi00051a026
    [68]
    Ludtke SJ, He K, Heller WT, Harroun TA, Yang L, Huang HW (1996) Membrane pores induced by magainin. Biochemistry 35(43): 13723−13728 doi: 10.1021/bi9620621
    [69]
    Mak D, Webb WW (1995) Two classes of alamethicin transmembrane channels: molecular models from single-channel properties. Biophys J 69(6): 2323−2336 doi: 10.1016/S0006-3495(95)80102-5
    [70]
    Mangoni ML, Shai Y (2009) Temporins and their synergism against Gram-negative bacteria and in lipopolysaccharide detoxification. BBA-Biomembranes 1788(8): 1610−1619 doi: 10.1016/j.bbamem.2009.04.021
    [71]
    Mani R, Buffy JJ, Waring AJ, Lehrer RI, Hong M (2004) Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Biochemistry 43(43): 13839−13848 doi: 10.1021/bi048650t
    [72]
    Marsh J, Goode JA (2007) Antimicrobial peptides. Ciba Foundation Symposium 186. Wiley, Chichester, UK. https://doi.org/10.1002/9780470514658
    [73]
    Matsubara A, Asami K, Akagi A, Nishino N (1996) Ion-channels of cyclic template-assembled alamethicins that emulate the pore structure predicted by the barrel-stave model. ChemComm 17: 2069−2070
    [74]
    Matsuzaki K (1999) Why and how are peptide–lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. BBA-Biomembranes 1462(1-2): 1−10 doi: 10.1016/S0005-2736(99)00197-2
    [75]
    Matsuzaki K, Murase O, Fujii N, Miyajima K (1995) Translocation of a channel-forming antimicrobial peptide, magainin 2, across lipid bilayers by forming a pore. Biochemistry 34(19): 6521−6526 doi: 10.1021/bi00019a033
    [76]
    Matsuzaki K, Sugishita K-i, Ishibe N, Ueha M, Nakata S, Miyajima K, Epand RM (1998) Relationship of membrane curvature to the formation of pores by magainin 2. Biochemistry 37(34): 11856−11863 doi: 10.1021/bi980539y
    [77]
    Mechler A, Praporski S, Atmuri K, Boland M, Separovic F, Martin LLJBj (2007) Specific and selective peptide-membrane interactions revealed using quartz crystal microbalance. Biophys J 93(11): 3907−3916 doi: 10.1529/biophysj.107.116525
    [78]
    Mechler A, Praporski S, Piantavigna S, Heaton SM, Hall KN, Aguilar M-I, Martin LL (2009) Structure and homogeneity of pseudo-physiological phospholipid bilayers and their deposition characteristics on carboxylic acid terminated self-assembled monolayers. Biomaterials 30(4): 682−689 doi: 10.1016/j.biomaterials.2008.10.016
    [79]
    Melikov KC, Frolov VA, Shcherbakov A, Samsonov AV, Chizmadzhev YA, Chernomordik LV (2001) Voltage-induced nonconductive pre-pores and metastable single pores in unmodified planar lipid bilayer. Biophys J 80(4): 1829−1836 doi: 10.1016/S0006-3495(01)76153-X
    [80]
    Nguyen KT, Le Clair SV, Ye S, Chen Z (2009) Molecular interactions between magainin 2 and model membranes in situ. J Phys Chem B 113(36): 12358−12363 doi: 10.1021/jp904154w
    [81]
    Ningsih Z, Hossain MA, Wade JD, Clayton AH, Gee ML (2012) Slow insertion kinetics during interaction of a model antimicrobial peptide with unilamellar phospholipid vesicles. Langmuir 28(4): 2217−2224 doi: 10.1021/la203770j
    [82]
    Oren Z, Shai Y (1998) Mode of action of linear amphipathic α‐helical antimicrobial peptides. Pept Sci 47(6): 451−463 doi: 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F
    [83]
    Ostolaza H, Bartolomé B, de Zárate IO, de la Cruz F, Goñi FM (1993) Release of lipid vesicle contents by the bacterial protein toxin α-haemolysin. BBA-Biomembranes 1147(1): 81−88 doi: 10.1016/0005-2736(93)90318-T
    [84]
    Pandidan S, Mechler A (2019) Nano-viscosimetry analysis of the membrane disrupting action of the bee venom peptide melittin. Sci Rep 9(1): 1−12
    [85]
    Papo N, Shai Y (2003) Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides. Biochemistry 42(2): 458−466 doi: 10.1021/bi0267846
    [86]
    Parisien A, Allain B, Zhang J, Mandeville R, Lan C (2008) Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104(1): 1−13
    [87]
    Park S-C, Park Y, Hahm K-S (2011) The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. Int J Mol Sci 12(9): 5971−5992 doi: 10.3390/ijms12095971
    [88]
    Pasupuleti M, Schmidtchen A, Malmsten M (2012) Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 32(2): 143−171 doi: 10.3109/07388551.2011.594423
    [89]
    Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid membranes. Biochemistry 31(49): 12416−12423 doi: 10.1021/bi00164a017
    [90]
    Powers J-PS, Hancock RE (2003) The relationship between peptide structure and antibacterial activity. Peptides 24(11): 1681−1691 doi: 10.1016/j.peptides.2003.08.023
    [91]
    Pukala TL, Brinkworth CS, Carver JA, Bowie JH (2004) Investigating the importance of the flexible hinge in caerin 1.1: solution structures and activity of two synthetically modified caerin peptides. Biochemistry 43(4): 937−944 doi: 10.1021/bi035760b
    [92]
    Radek K, Gallo R (2007) Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29(1): 27−43 doi: 10.1007/s00281-007-0064-5
    [93]
    Rakowska PD, Jiang H, Ray S, Pyne A, Lamarre B, Carr M, Judge PJ, Ravi J, Gerling UI, Koksch B (2013) Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers. Proc Natl Acad Sci USA 110(22): 8918−8923 doi: 10.1073/pnas.1222824110
    [94]
    Sani M-A, Separovic F (2016) How membrane-active peptides get into lipid membranes. Acc Chem Res 49(6): 1130−1138 doi: 10.1021/acs.accounts.6b00074
    [95]
    Sansom MS (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55(3): 139−235 doi: 10.1016/0079-6107(91)90004-C
    [96]
    Sato H, Feix JB (2006) Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. BBA-Biomembranes 1758(9): 1245−1256 doi: 10.1016/j.bbamem.2006.02.021
    [97]
    Seelig J (2004) Thermodynamics of lipid–peptide interactions. BBA-Biomembranes 1666(1-2): 40−50 doi: 10.1016/j.bbamem.2004.08.004
    [98]
    Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. BBA-Biomembranes 1778(10): 2308−2317 doi: 10.1016/j.bbamem.2008.06.007
    [99]
    Shahmiri M, Cornell B, Mechler A (2017) Phenylalanine residues act as membrane anchors in the antimicrobial action of Aurein 1.2. Biointerphases 12(5): 05G605. https://doi.org/10.1116/1.4995674
    [100]
    Shahmiri M, Enciso M, Adda CG, Smith BJ, Perugini MA, Mechler A (2016) Membrane core-specific antimicrobial action of cathelicidin LL-37 peptide switches between pore and nanofibre formation. Sci Rep 6: 38184. https://doi.org/10.1038/srep38184
    [101]
    Shahmiri M, Enciso M, Mechler A (2015) Controls and constrains of the membrane disrupting action of Aurein 1.2. Sci Rep 5: 16378. https://doi.org/10.1038/srep16378
    [102]
    Shahmiri M, Mechler A (2020) The role of C-terminal amidation in the mechanism of action of the antimicrobial peptide aurein 1.2. EuroBiotech J 4(1): 25−31 doi: 10.2478/ebtj-2020-0004
    [103]
    Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. BBA-Biomembranes 1462(1): 55−70
    [104]
    Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Pept Sci 66(4): 236−248 doi: 10.1002/bip.10260
    [105]
    Shai Y, Oren Z (2001) From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides 22(10): 1629−1641 doi: 10.1016/S0196-9781(01)00498-3
    [106]
    Slocinska M, Marciniak P, Rosinski G (2008) Insects antiviral and anticancer peptides: new leads for the future? Protein Peptide Lett 15(6): 578−585 doi: 10.2174/092986608784966912
    [107]
    Speck S, Courtiol A, Junkes C, Dathe M, Muller K, Schulze M (2014) Cationic synthetic peptides: assessment of their antimicrobial potency in liquid preserved boar semen. PLoS One 9(8): e105949. https://doi.org/10.1371/journal.pone.0105949
    [108]
    Steiner H, Andreu D, Merrifield RB (1988) Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. BBA-Biomembranes 939(2): 260−266 doi: 10.1016/0005-2736(88)90069-7
    [109]
    Steiner H, Hultmark D, Engström Å, Bennich H, Boman H (1981) Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292(5820): 246−248 doi: 10.1038/292246a0
    [110]
    Strandberg E, Tiltak D, Ieronimo M, Kanithasen N, Wadhwani P, Ulrich AS (2007) Influence of C-terminal amidation on the antimicrobial and hemolytic activities of cationic α-helical peptides. Pure Appl Chem 79(4): 717−728 doi: 10.1351/pac200779040717
    [111]
    Strøm MB, Rekdal Ø, Svendsen JS (2002) The effects of charge and lipophilicity on the antibacterial activity of undecapeptides derived from bovine lactoferricin. J Pept Sci 8(1): 36−43 doi: 10.1002/psc.365
    [112]
    Tamba Y, Yamazaki M (2005) Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability. Biochemistry 44(48): 15823−15833 doi: 10.1021/bi051684w
    [113]
    Tamba Y, Yamazaki M (2009) Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface. J Phys Chem B 113(14): 4846−4852 doi: 10.1021/jp8109622
    [114]
    Tossi A, Sandri L, Giangaspero A (2000) Amphipathic, α‐helical antimicrobial peptides. Pept Sci 55(1): 4−30 doi: 10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
    [115]
    Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4: 58−69 doi: 10.1016/j.euprot.2014.05.003
    [116]
    Vouille V, Amiche M, Nicolas P (1997) Structure of genes for dermaseptins B, antimicrobial peptides from frog skin: exon 1‐encoded prepropeptide is conserved in genes for peptides of highly different structures and activities. FEBS Lett 414(1): 27−32 doi: 10.1016/S0014-5793(97)00972-1
    [117]
    Weaver JC, Chizmadzhev YA (1996) Theory of electroporation: a review. BBA-Biomembranes 41(2): 135−160
    [118]
    Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol 5(10): 905−917 doi: 10.1021/cb1001558
    [119]
    Wimley WC, Hristova K (2011) Antimicrobial peptides: successes, challenges and unanswered questions. J Membr Biol 239(1−2): 27−34 doi: 10.1007/s00232-011-9343-0
    [120]
    Yang L, Gordon VD, Trinkle DR, Schmidt NW, Davis MA, DeVries C, Som A, Cronan JE Jr., Tew GN, Wong GC (2008) Mechanism of a prototypical synthetic membrane-active antimicrobial: Efficient hole-punching via interaction with negative intrinsic curvature lipids. Proc Natl Acad Sci USA 105(52): 20595−20600 doi: 10.1073/pnas.0806456105
    [121]
    Yang L, Harroun TA, Weiss TM, Ding L, Huang HW (2001) Barrel-stave model or toroidal model? A case study on melittin pores. Biophys J 81(3): 1475−1485 doi: 10.1016/S0006-3495(01)75802-X
    [122]
    Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55(1): 27−55 doi: 10.1124/pr.55.1.2
    [123]
    Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84(15): 5449−5453 doi: 10.1073/pnas.84.15.5449
    [124]
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415(6870): 389−395 doi: 10.1038/415389a
    [125]
    Zemel A, Fattal DR, Ben-Shaul A (2003) Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 84(4): 2242−2255 doi: 10.1016/S0006-3495(03)75030-9
    [126]
    Zhang Q, Xu Y, Wang Q, Hang B, Sun Y, Wei X, Hu J (2015) Potential of novel antimicrobial peptide P3 from bovine erythrocytes and its analogs to disrupt bacterial membranes in vitro and display activity against drug-resistant bacteria in a mouse model. Antimicrob Agents Chemother 59(5): 2835−2841 doi: 10.1128/AAC.04932-14
    [127]
    Zumla A, Grange JM (2001) Multidrug-resistant tuberculosis — Can the tide be turned? Lancet Infect Dis 1(3): 199−202 doi: 10.1016/S1473-3099(01)00096-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1097) PDF downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return