Xiaomin Li, Hongli Feng, Jianguo Zhang, Lei Sun, Ping Zhu. Analysis of chromatin bersin Hela cells with electron tomography. Biophysics Reports, 2015, 1(1): 51-60. doi: 10.1007/x41048-015-0009-9
Citation: Xiaomin Li, Hongli Feng, Jianguo Zhang, Lei Sun, Ping Zhu. Analysis of chromatin bersin Hela cells with electron tomography. Biophysics Reports, 2015, 1(1): 51-60. doi: 10.1007/x41048-015-0009-9

Analysis of chromatin bersin Hela cells with electron tomography

doi: 10.1007/x41048-015-0009-9
More Information
  • Corresponding author: Ping Zhu
  • Received Date: 09 March 2015
  • Rev Recd Date: 12 April 2015
  • Publish Date: 31 August 2015
  • The presence and folding pattern of chromatin in eukaryotic cells remain elusive and controversial. In this study, we prepared ultra-thin sections of Hela cells with three different fixation and sectioning methods, i.e., chemical fixation, high pressure freezing with freeze substitution, and cryo-ultramicro- tomy with SEM-FIB (focused ion beam), and analyzed in vivo architecture of chromatin fibers in Hela nuclei with electron tomography technology. The results suggest that the chromatin fibers in eukaryotic Hela cells are likely organized in an architecture with a diameter of about 30 nm.
  • loading
  • 参考文献
    Athey BD, Smith MF, Rankert DA, William SP, Langmore JP (1990) The diameters of frozen-hydrated chromatin fibers increase with DNA linker length: evidence in support of variable diameter models for chromatin. J Cell Biol 111:795-806
    Bednar J, Horowitz RA, Dubochet J, Woodcock CL (1995) Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol 131:1365-1376
    Daban JR (2011) Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. Micron 42:733-750
    Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 A resolution. J Mol Biol 319:1097-1113
    Davies HG, Murray AB, Walmsley ME (1974) Electron-microscope observations on the organization of the nucleus in chicken erythrocytes and a superunit thread hypothesis for chromosome structure. J Cell Sci 16:261-299
    Derenzini M, Olins AL, Olins DE (2014) Chromatin structure in situ: the contribution of DNA ultrastructural cytochemistry. Eur J Histochem 58:2307
    Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet J (2008) Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci USA 105:19732-19737
    Eltsov M, Sosnovski S, Olins AL, Olins DE (2014) ELCS in ice: cryoelectron microscopy of nuclear envelope-limited chromatin sheets. Chromosoma 123:303-312
    Everid AC, Small JV, Davies HG (1970) Electron-microscope observation on the structure of condensed chromatin: evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J Cell Sci 7:35-48
    Fakan S, van Driel R (2007) The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 18:676-681
    Finch JT, Klug A (1976) Solenoidal model for superstructure in chromatin. Proc Natl Acad Sci USA 73:1897-1901
    Fussner E, Ching RW, Bazett-Jones DP (2011) Living without 30 nm chromatin fibers. Trends Biochem Sci 36:1-6
    Gerchman SE, Ramakrishnan V (1987) Chromatin higher-order structure studied by neutron scattering and scanning transmission electron microscopy. Proc Natl Acad Sci USA 84:7802-780h
    Giannasca PJ, Horowitz RA, Woodcock CL (1993) Transitions between in situ and isolated chromatin. J Cell Sci 105:551-561
    Grigoryev SA,Woodcock CL (2012) Chromatin organization: the 30 nm fiber. Exp Cell Res 318:1448-1455
    Horn PJ, Peterson CL (2002) Chromatin higher order foldingwrapping up transcription. Science 297:1824-1827
    Horowitz RA, Agard DA, Sedat JW, Woodcock CL (1994) The threedimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J Cell Biol 125:1-10
    Huynh VA, Robinson PJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined "30 nm" chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957-968
    Konig P, Braunfeld MB, Sedat JW, Agard DA (2007) The threedimensional structure of in vitro reconstituted Xenopus laevis chromosomes by EM tomography. Chromosoma 116:349-372
    Kruithof M, Chien FT, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534-540
    Langmore JP, Paulson JR (1983) Low angle X-ray diffraction studies of chromatin structure in vivo and in isolated nuclei and metaphase chromosomes. J Cell Biol 96:1120-1131
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251-260
    Matsuda A, Shao L, Boulanger J, Kervrann C, Canton PM, Kner P, Agard D, Sedat JW (2010) Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFPhistones. PLoS One 5:e12768
    McDowall AW, Smith JM, Dubochet J (1986) Cryo-electron microscopy of vitrified chromosomes in situ. EMBO J 5:1395-1402
    Rigort A, Bauerlein FJ, Leis A, Gruska M, Hoffmann C, Laugks T, Bohm U, Eibauer M, Gnaegi H, Baumeister W Plitzko JM (2010) Micromachining tools and correlative approaches for cellular cryo-electron tomography J Struct Biol 172:169-179
    Robinson PJ, Rhodes D (2006) Structure of the "30 nm" chromatin fibre: a key role for the linker histone. Curr Opin Struct Biol 16:336-343
    Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) EM measuremenu define the dimensions of the '30-nm' chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103:6506-6511
    Rogort A, Bauerlein FJB, Villa E, Eibauer M, Laugks T, Baumeister W Plitzko JM (2012) Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109:4449-4454
    Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138-141
    Scheffer MP, Eltsov M, Frangakis AS (2011) Evidence for shortrange helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc Natl Acad Sci USA 108:16992-16997
    Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci USA 80:51-55
    Song F, Chen P, Sun D,Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376-380
    Widom J, Finch JT, Thomas JO (1985) Higher-order structure of long repeat chromatin. EMBO J 4:3189-3194
    William SP, Langmore JP (1991) Small angle X-ray scattering of chromatin. Radius and mass per unit length depend on linker length. Biophys J 59:606-618
    William SP, Athey BD, Lj M, Schappe RS, Gough AH, Langmore JP (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49:233-248
    Woodcock CL (1994) Chromatin fibers observed in situ in frozen hydrated sections. native fiber diameter is not correlated with nucleosome repeat length. J Cell Biol 125:11-19
    Woodcock CL, Frado L-LY, Rattner JB (1984) The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol 99:42-52
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (225) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return