Volume 6 Issue 6
Mar.  2021
Turn off MathJax
Article Contents
Lujun Hu, Wenjie Chen, Shurong Zhou, Guizhi Zhu. ExoHCR: a sensitive assay to profile PD-L1 level on tumor exosomes for immunotherapeutic prognosis[J]. Biophysics Reports, 2020, 6(6): 290-298. doi: 10.1007/s41048-020-00122-x
Citation: Lujun Hu, Wenjie Chen, Shurong Zhou, Guizhi Zhu. ExoHCR: a sensitive assay to profile PD-L1 level on tumor exosomes for immunotherapeutic prognosis[J]. Biophysics Reports, 2020, 6(6): 290-298. doi: 10.1007/s41048-020-00122-x

ExoHCR: a sensitive assay to profile PD-L1 level on tumor exosomes for immunotherapeutic prognosis

doi: 10.1007/s41048-020-00122-x
Funds:  We thank Drs. da Rocha, Hawkridge, McClay, and McRae for facility sharing. L. Hu was supported with the China Scholarship Council scholarship. G. Zhu acknowledges partial support from the Center for Pharmaceutical Engineering and Sciences-VCU School of Pharmacy, NIH KL2 Scholarship and Endowment Fund from VCU C. Kenneth and Dianne Wright Center for Clinical and Translational Research (UL1TR002649 and KL2TR002648), American Cancer Society Institutional Research Grants (IRG-18-159-43), and VCU Presidential Research Quest Fund. Microscopy was performed at the VCU Microscopy Facility, supported in part by funding from NIH-NINDS Center (5 P30 NS047463) and, in part, by funding from the NIH-NCI Cancer Center (P30 CA016059). Flow cytometry was performed at the VCU Massey Cancer Center Flow Cytometry Shared Resource, which is supported, in part, with funding from NIH-NCI Cancer Center (P30 CA016059).
More Information
  • Corresponding author: Guizhi Zhu
  • Received Date: 04 July 2020
  • Rev Recd Date: 14 September 2020
  • Publish Date: 10 March 2021
  • Cancer immunotherapy has made recent breakthrough, including immune checkpoint blockade (ICB) that inhibits immunosuppressive checkpoints such as programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1). However, most cancer patients do not durably respond to ICB. To predict ICB responses for patient stratification, conventional immunostaining has been used to analyze the PD-L1 expression level on biopsied tumor tissues but has limitations of invasiveness and tumor heterogeneity. Recently, PD-L1 levels on tumor cell exosomes showed the potential to predict ICB response. Here, we developed a non-invasive, sensitive, and fast assay, termed as exosome-hybridization chain reaction (ExoHCR), to analyze tumor cell exosomal PD-L1 levels. First, using aCD63-conjugated magnetic beads, we isolated exosomes from B16F10 melanoma and CT26 colorectal cancer cells that were immunostimulated to generate PD-L1-positive exosomes. Exosomes were then incubated with a conjugate of PD-L1 antibody with an HCR trigger DNA (T), in which one aPD-L1-T conjugate carried multiple copies of T. Next, a pair of metastable fluorophore-labeled hairpin DNA (H1 and H2) were added, allowing T on aPD-L1-T to initiate HCR in situ on bead-conjugated exosome surfaces. By flow cytometric analysis of the resulting beads, relative to aPD-L1-fluorophore conjugates, ExoHCR amplified the fluorescence signal intensities for exosome detection by 3-7 times in B16F10 cells and CT26 cells. Moreover, we validated the biostability of ExoHCR in culture medium supplemented with 50% FBS. These results suggest the potential of ExoHCR for non-invasive, sensitive, and fast PD-L1 exosomal profiling in patient stratification of cancer immunotherapy.
  • loading
  • Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance:a comprehensive review. Cancer Metastasis Rev 32:623-642
    Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W (2018) Exosomal PDL1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382-386
    Chen Z, Yang L, Cui Y, Zhou Y, Yin X, Guo J, Zhang G, Wang T, He QY (2016) Cytoskeleton-centric protein transportation by exosomes transforms tumor-favorable macrophages. Oncotarget 7:67387-67402
    Choi HMT, Beck VA, Pierce NA (2014) Next-generation in situ hybridization chain reaction:higher gain, lower cost, greater durability. ACS Nano 8(5):4284-4294
    De Toro J, Herschlik L, Waldner C, Mongini C (2015) Emerging roles of exosomes in normal and pathological conditions:new insights for diagnosis and therapeutic applications. Front Immunol 6:203. https://doi.org/10.3389/fimmu.2015.00203
    Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci USA 101(43):15275-15278
    Dougan M, Dranoff G (2009) Immune therapy for cancer. Annu Rev Immunol 27:83-117
    Enomoto K, Uwabe KI, Naito S, Onoda J, Yamauchi A, Numata Y, Takemoto H (2008) A double epitope tag for quantification of recombinant protein using fluorescence resonance energy transfer. Anal Biochem 380(2):249-256
    Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy:the beginning of the end of cancer?BMC Med 14:73. https://doi.org/10.1186/s12916-016-0623-5
    Griepenburg JC, Ruble BK, Dmochowski IJ (2013) Caged oligonucleotides for bidirectional photomodulation of let-7 miRNA in zebrafish embryos. Bioorg Med Chem 21(20):6198-6204
    Haderk F, Schulz R, Iskar M, Cid LL, Worst T, Willmund KV, Schulz A, Warnken U, Seiler J, Benner A, Nessling M, Zenz T, Göbel M, Dürig J, Diederichs S, Paggetti J, Moussay E, Stilgenbauer S, Zapatka M, Lichter P, Seiffert M (2017) Tumor-derived exosomes modulate PD-L1 expression in monocytes. Sci Immunol 2(13):eaah5509. https:\doi.org10.1126/sciimmu nol.aah5509
    Huang J, Wu Y, Chen Y, Zhu Z, Yang X, Yang CJ, Wang K, Tan W (2011) Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed 50(2):401-404
    Kawabata T, Watanabe M, Nakamura K, Satomura S (2005) Liquidphase binding assay of a-fetoprotein using DNA-coupled antibody and capillary chip electrophoresis. Anal Chem 77(17):5579-5582
    Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment:immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13:273-290
    Lai WY, Huang BT, Wang JW, Lin PY, Yang PC (2016) A novel PDL1-targeting antagonistic DNA aptamer with antitumor effects. Mol Ther Nucleic Acids 5:e397. https://doi.org/10.1038/mtna.2016.102
    Linares R, Tan S, Gounou C, Arraud N, Brisson AR (2015) Highspeed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles 4(1):29509. https://doi.org/10.3402/jev.v4.29509
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDCT method. Methods 25:402-408
    Liu D, Wang S, Bindeman W (2017) Clinical applications of PD-L1 bioassays for cancer immunotherapy. J Hematol Oncol 10:110. https://doi.org/10.1186/s13045-017-0479-y
    Logozzi M, De Milito A, Lugini L, Borghi M, CalabròL, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219. https://doi.org/10.1371/journal.pone.0005219
    Pinato DJ, Shiner RJ, White SDT, Black JRM, Trivedi P, Stebbing J, Sharma R, Mauri FA (2016) Intra-tumoral heterogeneity in the expression of programmed-death (PD) ligands in isogeneic primary and metastatic lung cancer:implications for immunotherapy. OncoImmunology 5:e1213934. https://doi.org/10.1080/2162402X.2016.1213934
    Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R (2019) Suppression of exosomal PD-L1 induces systemic anti-tumor immunity and memory. Cell 177(2):414-427
    Ren J, Wang J, Han L, Wang E, Wang J (2011) Kinetically grafting G-quadruplexes onto DNA nanostructures for structure and function encoding via a DNA machine. Chem Commun 47:10563-10565
    Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350-1355
    Rood IM, Deegens JKJ, Merchant ML, Tamboer WPM, Wilkey DW, Wetzels JFM, Klein JB (2010) Comparison of three methods for isolation of urinary microvesicles to identify biomarkers of nephrotic syndrome. Kidney Int 78(8):810-816
    Shia J (2008) Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. J Mol Diagn 10(4):293-300
    Song Y, Wu L, Yang C (2019) Exosomal PD-L1:an effective liquid biopsy target to predict immunotherapy response. Natl Sci Rev 6(6):1103-1104
    Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 3(3):22. https://doi.org/10.1002/0471143030.cb0322s30
    Théry C, Zitvogel L, Amigorena S (2002) Exosomes:composition, biogenesis and function. Nat Rev Immunol 2(8):569-579 van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676-705
    Weng Y, Sui Z, Shan Y, Hu Y, Chen Y, Zhang L, Zhang Y (2016) Effective isolation of exosomes with polyethylene glycol from cell culture supernatant for in-depth proteome profiling. Analyst 141(15):4640-4646
    Wu Z, Liu GQ, Yang XL, Jiang JH (2015) Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 137(21):6829-6836
    Xuan F, Hsing IM (2014) Triggering hairpin-free chain-branching growth of fluorescent DNA dendrimers for nonlinear hybridization chain reaction. J Am Chem Soc 136(28):9810-9813
    Xu R, Rai A, Chen M, Suwakulsiri W, Greening DW, Simpson RJ (2018) Extracellular vesicles in cancer-implications for future improvements in cancer care. Nat Rev Clin Oncol 15(10):617-638
    Zhu G, Zhang S, Song E, Zheng J, Hu R, Fang X, Tan W (2013a) Building fluorescent DNA nanodevices on target living cell surfaces. Angew Chem Int Ed 52(21):5490-5496
    Zhu G, Zheng J, Song E, Donovan M, Zhang K, Liu C, Tan W (2013b) Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc Natl Acad Sci USA 110(20):7998-8003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (566) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return