Volume 6 Issue 5
Mar.  2021
Turn off MathJax
Article Contents
Ziyi Guo, Jian Liu, Da-Wei Wang, Jiangtao Xu, Kang Liang. Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments[J]. Biophysics Reports, 2020, 6(5): 179-192. doi: 10.1007/s41048-020-00119-6
Citation: Ziyi Guo, Jian Liu, Da-Wei Wang, Jiangtao Xu, Kang Liang. Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments[J]. Biophysics Reports, 2020, 6(5): 179-192. doi: 10.1007/s41048-020-00119-6

Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments

doi: 10.1007/s41048-020-00119-6
Funds:  Kang Liang
  • Received Date: 22 June 2020
  • Publish Date: 10 March 2021
  • Micro/nanomotors (MNMs) are tiny motorized objects that can autonomously navigate in complex fluidic environments under the influence of an appropriate source of energy. Internal energy driven MNMs are composed of certain reactive materials that are capable of converting chemical energy from the surroundings into kinetic energy. Recent advances in smart nanomaterials design and processing have endowed the internal energy driven MNMs with different geometrical designs and various mechanisms of locomotion, with remarkable travelling speed in diverse environments ranging from environmental water to complex body fluids. Among the different design principals, MNM systems that operate from biocatalysis possess biofriendly components, efficient energy conversion, and mild working condition, exhibiting a potential of stepping out of the proof-of-concept phase for addressing many real-life environmental and biotechnological challenges. The biofriendliness of MNMs should not only be considered for in vivo drug delivery but also for environmental remediation and chemical sensing that only environmentally friendly intermediates and degraded products are generated. This review aims to provide an overview of the recent advances in biofriendly MNM design using biocatalysis as the predominant driving force, towards practical applications in biotechnology and environmental technology.
  • loading
  • Arque X, Romero-Rivera A, Feixas F, Patino T, Osuna S, Sanchez S (2019) Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat Commun 10(1): 2826
    Chen C, He Z, Wu J, Zhang X, Xia Q, Ju H (2019) Motion of enzyme-powered microshell motors. Chem Asian J 14(14): 2491-2496
    Choi H, Cho SH, Hahn SK (2020) Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 14(6): 6683-6692
    Coopersmith KJ (2017) Putting nanoparticles to work: self-propelled inorganic micro- and nanomotors. In: Hunyadi Murph SE, Larsen GK, Coopersmith KJ (eds). Book. Anisotropic and shape-selective nanomaterials. Springer International Publishing, Cham, pp 153-168
    Cross RA (1997) Molecular motors: the natural economy of kinesin. Curr Biol 7(10): R631-R633
    de Ávila BE-F, Angsantikul P, Li J, Angel Lopez-Ramirez M, Ramírez-Herrera DE, Thamphiwatana S, Chen C, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L, Wang J (2017) Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat Commun 8(1): 272
    Dey KK, Zhao X, Tansi BM, Méndez-Ortiz WJ, Córdova-Figueroa UM, Golestanian R, Sen A (2015) Micromotors powered by enzyme catalysis. Nano Lett 15(12): 8311-8315
    Eskandarloo H, Kierulf A, Abbaspourrad A (2017) Light-harvesting synthetic nano- and micromotors: a review. Nanoscale 9(34): 12218-12230
    Esteban-Fernández de Ávila B, Angsantikul P, Li J, Gao W, Zhang L, Wang J (2018a) Micromotors go in vivo: from test tubes to live animals. Adv Funct Mater 28(25): 1705640
    Esteban-Fernandez de Avila B, Gao W, Karshalev E, Zhang L, Wang J (2018b) Cell-like micromotors. Acc Chem Res 51(9): 1901-1910
    Felder M, Kapur A, Gonzalez-Bosquet J, Horibata S, Heintz J, Albrecht R, Fass L, Kaur J, Hu K, Shojaei H, Whelan RJ, Patankar MS (2014) MUC16 (CA125): tumor biomarker to cancer therapy, a work in progress. Mol Cancer 13(1): 129
    Fernández‐Medina M, Ramos‐Docampo MA, Hovorka O, Salgueiriño V, Städler B (2020) Recent advances in nano- and micromotors. Adv Funct Mater 30(12): 1908283
    Gao S, Hou J, Zeng J, Richardson JJ, Gu Z, Gao X, Li D, Gao M, Wang D-W, Chen P, Chen V, Liang K, Zhao D, Kong B (2019) Superassembled biocatalytic porous framework micromotors with reversible and sensitive pH-speed regulation at ultralow physiological H2O2 concentration. Adv Funct Mater 29(18): 1808900
    Gao W, de Ávila BE-F, Zhang L, Wang J (2018) Targeting and isolation of cancer cells using micro/nanomotors. Adv Drug Deliv Rev 125: 94-101
    Gao W, Pei A, Dong R, Wang J (2014) Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels. J Am Chem Soc 136(6): 2276-2279
    Gao W, Pei A, Wang J (2012) Water-driven micromotors. ACS Nano 6(9): 8432-8438
    Gáspár S (2014) Enzymatically induced motion at nano- and micro-scales. Nanoscale 6(14): 7757-7763
    Gregory DA, Zhang Y, Smith PJ, Zhao X, Ebbens SJ (2016) Reactive inkjet printing of biocompatible enzyme powered silk micro-rockets. Small 12(30): 4048-4055
    Guo Z, Richardson JJ, Kong B, Liang K (2020) Nanobiohybrids: materials approaches for bioaugmentation. Sci Adv 6(12): eaaz0330
    Guo ZY, Wang T, Rawal A, Hou JW, Cao ZB, Zhang H, Xu JT, Gu Z, Chen V, Liang K (2019) Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Mater Today 28: 10-16
    Hortelão AC, Carrascosa R, Murillo-Cremaes N, Patiño T, Sánchez S (2019) Targeting 3D bladder cancer spheroids with urease-powered nanomotors. ACS Nano 13(1): 429-439
    Hortelão AC, Patiño T, Perez-Jiménez A, Blanco À, Sánchez S (2018) Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater 28(25): 1705086
    Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-Perez L, Gaitzsch J, Fullstone G, Tian X, Azizi J, Preston J, Volpe G, Battaglia G (2017) Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci Adv 3(8): e1700362
    Jurado-Sanchez B (2018) Nanoscale biosensors based on self-propelled objects. Biosensors (Basel) 8: 59
    Jurado-Sánchez B, Escarpa A (2017) Janus micromotors for electrochemical sensing and biosensing applications: a review. Electroanalysis 29(1): 14-23
    Jurado-Sánchez B, Pacheco M, Maria-Hormigos R, Escarpa A (2017) Perspectives on Janus micromotors: materials and applications. Appl Mater Today 9: 407-418
    Jurado-Sánchez B, Wang J (2018) Micromotors for environmental applications: a review. Environ Sci: Nano 5(7): 1530-1544
    Khezri B, Pumera M (2019) Metal-organic frameworks based nano/micro/millimeter-sized self-propelled autonomous machines. Adv Mater 31(14): e1806530
    Kiristi M, Singh VV, Esteban-Fernández de Ávila B, Uygun M, Soto F, Aktaş Uygun D, Wang J (2015) Lysozyme-based antibacterial nanomotors. ACS Nano 9(9): 9252-9259
    Kong L, Guan J, Pumera M (2018) Micro- and nanorobots based sensing and biosensing. Curr Opin Electrochem 10: 174-182
    Kumar B, Patil AJ, Mann S (2018) Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat Chem 10(11): 1154-1163
    Li J, Angsantikul P, Liu W, Esteban-Fernández de Ávila B, Thamphiwatana S, Xu M, Sandraz E, Wang X, Delezuk J, Gao W, Zhang L, Wang J (2017) Micromotors spontaneously neutralize gastric acid for pH-responsive payload release. Angew Chem Int Ed 56(8): 2156-2161
    Liang J, Liang K (2020) Biocatalytic metal–organic frameworks: prospects beyond bioprotective porous matrices. Adv Funct Mater 30(27): 2001648
    Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6: 7240
    Liang K, Richardson JJ, Cui J, Caruso F, Doonan CJ, Falcaro P (2016a) Metal–organic framework coatings as cytoprotective exoskeletons for living cells. Adv Mater 28: 7910-7914
    Liang K, Ricco R, Doherty CM, Styles MJ, Falcaro P (2016b) Amino acids as biomimetic crystallization agents for the synthesis of ZIF-8 particles. CrystEngComm 18: 4264-4267
    Liang K, Wang R, Boutter M, Doherty CM, Mulet X, Richardson JJ (2017) Biomimetic mineralization of metal–organic frameworks around polysaccharides. Chem Commun 53: 1249-1252
    Liu M, Sun Y, Wang T, Ye Z, Zhang H, Dong B, Li CY (2016) A biodegradable, all-polymer micromotor for gas sensing applications. J Mater Chem C 4(25): 5945-5952
    Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T, Villalonga R, Sancenón F, Martínez-Máñez R, Sánchez S (2019) Enzyme-powered gated mesoporous silica nanomotors for on-command intracellular payload delivery. ACS Nano 13(10): 12171-12183
    Ma X, Feng H, Liang C, Liu X, Zeng F, Wang Y (2017) Mesoporous silica as micro/nano-carrier: from passive to active cargo delivery, a mini review. J Mater Sci Technol 33(10): 1067-1074
    Ma X, Hortelao AC, Patino T, Sanchez S (2016) Enzyme catalysis to power micro/nanomachines. ACS Nano 10(10): 9111-9122
    Ma X, Jannasch A, Albrecht U-R, Hahn K, Miguel-López A, Schäffer E, Sánchez S (2015) Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett 15(10): 7043-7050
    Ma X, Sánchez S (2017) Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme. Tetrahedron 73(33): 4883-4886
    Mayorga‐Martinez CC, Pumera M (2019) Self‐propelled tags for protein detection. Adv Funct Mater 30(6): 1906449
    Nijemeisland M, Abdelmohsen LKEA, Huck WTS, Wilson DA, van Hest JCM (2016) A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement. ACS Central Sci 2(11): 843-849
    Ning H, Zhang Y, Zhu H, Ingham A, Huang G, Mei Y, Solovev AA (2018) Geometry design, principles and assembly of micromotors. Micromachines (Basel) 9: 75
    Olson ES, Orozco J, Wu Z, Malone CD, Yi B, Gao W, Eghtedari M, Wang J, Mattrey RF (2013) Toward in vivo detection of hydrogen peroxide with ultrasound molecular imaging. Biomaterials 34(35): 8918-8924
    Orozco J, García-Gradilla V, D’Agostino M, Gao W, Cortés A, Wang J (2013) Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7(1): 818-824
    Orozco J, Vilela D, Valdes-Ramirez G, Fedorak Y, Escarpa A, Vazquez-Duhalt R, Wang J (2014) Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors. Chemistry 20(10): 2866-2871
    Pacheco M, Lopez MA, Jurado-Sanchez B, Escarpa A (2019) Self-propelled micromachines for analytical sensing: a critical review. Anal Bioanal Chem 411(25): 6561-6573
    Parmar J, Vilela D, Villa K, Wang J, Sánchez S (2018) Micro- and nanomotors as active environmental microcleaners and sensors. J Am Chem Soc 140(30): 9317-9331
    Patino T, Feiner-Gracia N, Arque X, Miguel-Lopez A, Jannasch A, Stumpp T, Schaffer E, Albertazzi L, Sanchez S (2018) Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J Am Chem Soc 140(25): 7896-7903
    Patino T, Porchetta A, Jannasch A, Lladó A, Stumpp T, Schäffer E, Ricci F, Sánchez S (2019) Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett 19(6): 3440-3447
    Peng F, Tu Y, Wilson DA (2017) Micro/nanomotors towards in vivo application: cell, tissue and biofluid. Chem Soc Rev 46(17): 5289-5310
    Restrepo-Perez L, Soler L, Martinez-Cisneros C, Sanchez S, Schmidt OG (2014) Biofunctionalized self-propelled micromotors as an alternative on-chip concentrating system. Lab Chip 14(16): 2914-2917
    Safdar M, Khan SU, Janis J (2018) Progress toward catalytic micro- and nanomotors for biomedical and environmental applications. Adv Mater 30(24): e1703660
    Sanchez S, Solovev AA, Mei Y, Schmidt OG (2010) Dynamics of biocatalytic microengines mediated by variable friction control. J Am Chem Soc 132(38): 13144-13145
    Sattayasamitsathit S, Kaufmann K, Galarnyk M, Vazquez-Duhalt R, Wang J (2014) Dual-enzyme natural motors incorporating decontamination and propulsion capabilities. RSC Adv 4(52): 27565-27570
    Schattling P, Thingholm B, Städler B (2015) Enhanced diffusion of glucose-fueled Janus particles. Chem Mater 27(21): 7412-7418
    Schattling PS, Ramos-Docampo MA, Salgueiriño V, Städler B (2017) Double-fueled Janus swimmers with magnetotactic behavior. ACS Nano 11(4): 3973-3983
    Simmchen J, Baeza A, Ruiz D, Esplandiu MJ, Vallet-Regí M (2012) Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor. Small 8(13): 2053-2059
    Somasundar A, Ghosh S, Mohajerani F, Massenburg LN, Yang T, Cremer PS, Velegol D, Sen A (2019) Positive and negative chemotaxis of enzyme-coated liposome motors. Nat Nanotechnol 14: 1129-1134
    Sugai N, Morita Y, Komatsu T (2019) Nonbubble-propelled biodegradable microtube motors consisting only of protein. Chem Asian J 14(17): 2953-2957
    Sun J, Mathesh M, Li W, Wilson DA (2019) Enzyme-powered nanomotors with controlled size for biomedical applications. ACS Nano 13(9): 10191-10200
    Sun Y, Ding M, Zeng X, Xiao Y, Wu H, Zhou H, Ding B, Qu C, Hou W, Er-bu AGA, Zhang Y, Cheng Z, Hong X (2017) Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci 8(5): 3489-3493
    Tang S, Zhang F, Gong H, Wei F, Zhuang J, Karshalev E, Esteban-Fernández de Ávila B, Huang C, Zhou Z, Li Z, Yin L, Dong H, Fang RH, Zhang X, Zhang L, Wang J (2020) Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci Robot 5(43): eaba6137
    Thomas N, Thornhill RA (1998) The physics of biological molecular motors. J Phys D Appl Phys 31(3): 253-266
    Tu Y, Peng F, Wilson DA (2017) Motion manipulation of micro- and nanomotors. Adv Mater 29: 1701970
    Vilela D, Parmar J, Zeng Y, Zhao Y, Sanchez S (2016) Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett 16(4): 2860-2866
    Wang C, Wang Z, Zhao T, Li Y, Huang G, Sumer BD, Gao J (2018) Optical molecular imaging for tumor detection and image-guided surgery. Biomaterials 157: 62-75
    Wang H, Moo JG, Pumera M (2016) From nanomotors to micromotors: the influence of the size of an autonomous bubble-propelled device upon its motion. ACS Nano 10(5): 5041-5050
    Wang H, Pumera M (2017) Emerging materials for the fabrication of micro/nanomotors. Nanoscale 9(6): 2109-2116
    Wang J, Dong R, Wu H, Cai Y, Ren B (2019a) A Review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett 12(1): 11
    Wang J, Hu Z, Xu J, Zhao Y (2014) Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mater 6(2): e84-e84
    Wang S, Liu X, Wang Y, Xu D, Liang C, Guo J, Ma X (2019b) Biocompatibility of artificial micro/nanomotors for use in biomedicine. Nanoscale 11(30): 14099-14112
    Wang Y, Hernandez RM, Bartlett DJ Jr, Bingham JM, Kline TR, Sen A, Mallouk TE (2006) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25): 10451-10456
    Wong F, Dey KK, Sen A (2016) Synthetic micro/nanomotors and pumps: fabrication and applications. Annu Rev Mater Res 46(1): 407-432
    Wong JKH, Tan HK, Lau SY, Yap P-S, Danquah MK (2019) Potential and challenges of enzyme incorporated nanotechnology in dye wastewater treatment: a review. J Environ Chem Eng 7(4): 103261
    Wu Y, Lin X, Wu Z, Möhwald H, He Q (2014) Self-propelled polymer multilayer Janus capsules for effective drug delivery and light-triggered release. ACS Appl Mater Interfaces 6(13): 10476-10481
    Wu Z, Lin X, Zou X, Sun J, He Q (2015) Biodegradable protein-based rockets for drug transportation and light-triggered release. ACS Appl Mater Interfaces 7(1): 250-255
    Ying Y, Pourrahimi AM, Sofer Z, Matejkova S, Pumera M (2019) Radioactive uranium preconcentration via self-propelled autonomous microrobots based on metal-organic frameworks. ACS Nano 13: 11477-11487
    You Y, Xu D, Pan X, Ma X (2019) Self-propelled enzymatic nanomotors for enhancing synergetic photodynamic and starvation therapy by self-accelerated cascade reactions. Appl Mater Today 16: 508-517
    Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G (2017) Graphene-based smart materials. Nat Rev Mater 2(9): 17046
    Zhang X, Chen C, Wu J, Ju H (2019) Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl Mater Interfaces 11(14): 13581-13588
    Zhao L, Liu Y, Xie S, Ran P, Wei J, Liu Q, Li X (2020) Janus micromotors for motion-capture-ratiometric fluorescence detection of circulating tumor cells. Chem Eng J 382: 123041
    Zhao X, Gentile K, Mohajerani F, Sen A (2018) Powering motion with enzymes. Acc Chem Res 51(10): 2373-2381
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (572) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return