Volume 6 Issue 5
Mar.  2021
Turn off MathJax
Article Contents
Yingsi Xie, Ruslan G. Tuguntaev, Cong Mao, Haoting Chen, Ying Tao, Shixiang Wang, Bin Yang, Weisheng Guo. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy[J]. Biophysics Reports, 2020, 6(5): 193-210. doi: 10.1007/s41048-020-00117-8
Citation: Yingsi Xie, Ruslan G. Tuguntaev, Cong Mao, Haoting Chen, Ying Tao, Shixiang Wang, Bin Yang, Weisheng Guo. Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy[J]. Biophysics Reports, 2020, 6(5): 193-210. doi: 10.1007/s41048-020-00117-8

Stimuli-responsive polymeric nanomaterials for rheumatoid arthritis therapy

doi: 10.1007/s41048-020-00117-8
Funds:  Shixiang Wang, Bin Yang, Weisheng Guo
  • Received Date: 01 June 2020
  • Publish Date: 10 March 2021
  • Rheumatoid arthritis (RA) is a long-term inflammatory disease derived from an autoimmune disorder of the synovial membrane. Current therapeutic strategies for RA mainly aim to hamper the macrophages' proliferation and reduce the production of pro-inflammatory cytokines. Therefore, the accumulation of therapeutic agents targeted at the inflammatory site should be a crucial therapeutic strategy. Nowadays, the nanocarrier system incorporated with stimuli-responsive property is being intensively studied, showing the potentially tremendous value of specific therapy. Stimuli-responsive (i.e., pH, temperature, light, redox, and enzyme) polymeric nanomaterials, as an important component of nanoparticulate carriers, have been intensively developed for various diseases treatment. A survey of the literature suggests that the use of targeted nanocarriers to deliver therapeutic agents (nanotherapeutics) in the treatment of inflammatory arthritis remains largely unexplored. The lack of suitable stimuli-sensitive polymeric nanomaterials is one of the limitations. Herein, we provide an overview of drug delivery systems prepared from commonly used stimuli-sensitive polymeric nanomaterials and some inorganic agents that have potential in the treatment of RA. The current situation and challenges are also discussed to stimulate a novel thinking about the development of nanomedicine.
  • loading
  • Abbas M, Monireh M (2008) The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran J Allergy Asthma Immunol 7(4): 195–202
    Alam MM, Han HS, Sung S, Kang JH, Sa KH, Al Faruque H, Hong J, Nam EJ, San Kim I, Park JH (2017) Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis. J Control Release 252: 62-72
    Albinali KE, Zagho MM, Deng Y, Elzatahry AA (2019) A perspective on magnetic core–shell carriers for responsive and targeted drug delivery systems. Int J Nanomed 14: 1707-1723
    Aletaha D, Smolen JS (2018) Diagnosis and management of rheumatoid arthritis: a review. JAMA 320(13): 1360-1372
    Arias JL, López-Viota M, López-Viota J, Delgado ÁV (2009) Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int J Pharm 382(1-2): 270-276
    Baeza A, Guisasola E, Ruiz-Hernandez E, Vallet-Regí M (2012) Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem Mater 24(3): 517-524
    Behrens MA, Bergenholtz J, Pedersen JS (2014) Temperature-induced attractive interactions of PEO-containing block copolymer micelles. Langmuir 30(21): 6021-6029
    Beija M, Marty J-D, Destarac M (2011) Thermoresponsive poly (N-vinyl caprolactam)-coated gold nanoparticles: sharp reversible response and easy tunability. Chem Commun 47(10): 2826-2828
    Borregaard N, Herlin T (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Investig 70(3): 550-557
    Boyer C, Liu J, Bulmus V, Davis TP (2009) RAFT polymer end-group modification and chain coupling/conjugation via disulfide bonds. Aust J Chem 62(8): 830-847
    Chatterjee S, Hui C-L (2019) Review of stimuli-responsive polymers in drug delivery and textile application. Molecules 24(14): 2547
    Chen B, Zhang Y, Ran R, Wang B, Qin F, Zhang T, Wan G, Chen H, Wang Y (2019a) Reactive oxygen species-responsive nanoparticles based on a thioketal-containing poly (β-amino ester) for combining photothermal/photodynamic therapy and chemotherapy. Polym Chem 10(34): 4746-4757
    Chen M-C, Mi F-L, Liao Z-X, Hsiao C-W, Sonaje K, Chung M-F, Hsu L-W, Sung H-W (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65(6): 865-879
    Chen M, Amerigos JCK, Su Z, Guissi NEI, Xiao Y, Zong L, Ping Q (2019b) Folate receptor-targeting and reactive oxygen species-responsive liposomal formulation of methotrexate for treatment of rheumatoid arthritis. Pharmaceutics 11(11): 582
    Cui W, Lu X, Cui K, Niu L, Wei Y, Lu Q (2012) Dual-responsive controlled drug delivery based on ionically assembled nanoparticles. Langmuir 28(25): 9413-9420
    Cui W, Lu X, Cui K, Wu J, Wei Y, Lu Q (2011) Photosensitive nanoparticles of chitosan complex for controlled release of dye molecules. Nanotechnology 22(6): 065702
    Dai J, Lin S, Cheng D, Zou S, Shuai X (2011) Interlayer‐crosslinked micelle with partially hydrated core showing reduction and pH dual sensitivity for pinpointed intracellular drug release. Angew Chem Int Ed 50(40): 9404-9408
    De La Rica R, Aili D, Stevens MM (2012) Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 64(11): 967-978
    Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM (2017) Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol 31(1): 3-18
    Duong HT, Jung K, Kutty SK, Agustina S, Adnan NNM, Basuki JS, Kumar N, Davis TP, Barraud N, Boyer C (2014) Nanoparticle (star polymer) delivery of nitric oxide effectively negates Pseudomonas aeruginosa biofilm formation. Biomacromolecules 15(7): 2583-2589
    Elluru M, Ma H, Hadjiargyrou M, Hsiao BS, Chu B (2013) Synthesis and characterization of biocompatible hydrogel using Pluronics-based block copolymers. Polymer 54(8): 2088-2095
    Fang W, Yang J, Gong J, Zheng N (2012) Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@ Ag nanoparticles. Adv Funct Mater 22(4): 842-848
    Farr M, GARVEYo K, Bold A, Kendall M, Bacon P (1985) Significance of the hydrogen ion concentration in synovial fluid. Clin Exp Rheumatol 3: 99-104
    Firestein GS, McInnes IB (2017) Immunopathogenesis of rheumatoid arthritis. Immunity 46(2): 183-196
    Fomina N, McFearin C, Sermsakdi M, Edigin O, Almutairi A (2010) UV and near-IR triggered release from polymeric nanoparticles. J Am Chem Soc 132(28): 9540-9542
    Fomina N, McFearin CL, Sermsakdi M, Morachis JM, Almutairi A (2011) Low power, biologically benign NIR light triggers polymer disassembly. Macromolecules 44(21): 8590-8597
    Fonseca LJS, Nunes-Souza V, Goulart MOF, Rabelo LA (2019) Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid Med Cell Longev 2019: 7536805
    Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3): 187-204
    Gaspar VM, Marques JG, Sousa F, Louro RO, Queiroz JA, Correia IJ (2013) Biofunctionalized nanoparticles with pH-responsive and cell penetrating blocks for gene delivery. Nanotechnology 24(27): 275101
    Geborek P, Saxne T, Pettersson H, Wollheim F (1989) Synovial fluid acidosis correlates with radiological joint destruction in rheumatoid arthritis knee joints. J Rheumatol 16(4): 468-472
    Goldie I, Nachemson A (1969) synovial pH in rheumatoid knee-joints I. The effect of synovectomy. Acta Orthop Scand 40(5): 634-641
    Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J (2018) Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res 6: 15
    Han D, Tong X, Zhao Y (2012) Block copolymer micelles with a dual-stimuli-responsive core for fast or slow degradation. Langmuir 28(5): 2327-2331
    Heidarli E, Dadashzadeh S, Haeri A (2017) State of the art of stimuli-responsive liposomes for cancer therapy. Iran J Pharm Res 16(4): 1273-1304
    Huo M, Yuan J, Tao L, Wei Y (2014) Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 5(5): 1519-1528
    Indermun S, Govender M, Kumar P, Choonara YE, Pillay V (2018) Stimuli-responsive polymers as smart drug delivery systems: classifications based on carrier type and triggered-release mechanism. In: Abdel Salam Hamdy Makhlouf and Nedal Y. Abu-Thabit (eds). Stimuli responsive polymeric nanocarriers for drug delivery applications (Vol. 1). Elsevier, Amsterdam, pp 43–58
    Jain M, Attur M, Furer V, Todd J, Ramirez R, Lock M, Lu QA, Abramson SB, Greenberg JD (2015) Increased plasma IL-17F levels in rheumatoid arthritis patients are responsive to methotrexate, anti-TNF, and T cell costimulatory modulation. Inflammation 38(1): 180-186
    James HP, John R, Alex A, Anoop K (2014) Smart polymers for the controlled delivery of drugs — a concise overview. Acta Pharm Sin B 4(2): 120-127
    Jin H, Zhu T, Huang X, Sun M, Li H, Zhu X, Liu M, Xie Y, Huang W, Yan D (2019) ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials 211: 68-80
    Jung J, Lee IH, Lee E, Park J, Jon S (2007) pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle. Biomacromolecules 8(11): 3401-3407
    Karimi M, Eslami M, Sahandi‐Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR (2016a) pH-sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8(5): 696-716
    Karimi M, Sahandi Zangabad P, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Ghahramanzadeh Asl H, Mahdieh Z, Bozorgomid M, Ghasemi A (2016b) Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 8(33): 21107-21133
    Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10(13): 4025-4031
    Khojah HM, Ahmed S, Abdel-Rahman MS, Hamza A-B (2016) Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic Biol Med 97: 285-291
    Kim HJ, Lee S-M, Park K-H, Mun CH, Park Y-B, Yoo K-H (2015) Drug-loaded gold/iron/gold plasmonic nanoparticles for magnetic targeted chemo-photothermal treatment of rheumatoid arthritis. Biomaterials 61: 95-102
    Kim MS, Gruneich J, Jing H, Diamond SL (2010) Photo-induced release of active plasmid from crosslinked nanoparticles: o-nitrobenzyl/methacrylate functionalized polyethyleneimine. J Mater Chem 20(17): 3396-3403
    Kuang T, Liu Y, Gong T, Peng X, Hu X, Yu Z (2016) Enzyme-responsive nanoparticles for anticancer drug delivery. Curr Nanosci 12(1): 38-46
    Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, Yoo KH (2013) Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano 7(1): 50-57
    Lima SAC, Reis S (2015) Temperature-responsive polymeric nanospheres containing methotrexate and gold nanoparticles: a multi-drug system for theranostic in rheumatoid arthritis. Colloids Surf B Biointerfaces 133: 378-387
    Liu J, Duong H, Whittaker MR, Davis TP, Boyer C (2012) Synthesis of functional core, star polymers via RAFT polymerization for drug delivery applications. Macromol Rapid Commun 33(9): 760-766
    Liu L, Hu F, Wang H, Wu X, Eltahan AS, Stanford S, Bottini N, Xiao H, Bottini M, Guo W (2019) Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS nano 13(5): 5036-5048
    Liu R, Li D, He B, Xu X, Sheng M, Lai Y, Wang G, Gu Z (2011) Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J Control Release 152(1): 49-56
    Lopes JR, Santos G, Barata P, Oliveira R, Lopes CM (2013) Physical and chemical stimuli-responsive drug delivery systems: targeted delivery and main routes of administration. Curr Pharm Des 19(41): 7169-7184
    Lu J, Choi E, Tamanoi F, Zink JI (2008) Light‐activated nanoimpeller‐controlled drug release in cancer cells. Small 4(4): 421-426
    Lv C, Wang Z, Wang P, Tang X (2012) Photodegradable polyurethane self-assembled nanoparticles for photocontrollable release. Langmuir 28(25): 9387-9394
    McInnes IB, O'Dell JR (2010) State-of-the-art: rheumatoid arthritis. Ann Rheum Dis 69(11): 1898-1906
    McInnes IB, Schett G (2017) Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389(10086): 2328-2337
    Menkin V (1956) Biology of inflammation. Science 123: 527-534
    Moon SJ, You DG, Li Y, Um W, Jung JM, Kim CH, Oh BH, Park JH, Lee DS (2020) pH-sensitive polymeric micelles as the methotrexate carrier for targeting rheumatoid arthritis. Macromol Res 28: 99-102
    Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11): 991-1003
    Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14(2): 412-419
    Nahire R, Paul S, Scott MD, Singh RK, Muhonen WW, Shabb J, Gange KN, Srivastava D, Sarkar K, Mallik S (2012) Ultrasound enhanced matrix metalloproteinase-9 triggered release of contents from echogenic liposomes. Mol Pharm 9(9): 2554-2564
    Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A (2016) Folate-targeted nanoparticles for rheumatoid arthritis therapy. Nanomed Nanotechnol Biol Med 12(4): 1113-1126
    Oliveira IM, Gonçalves C, Reis RL, Oliveira JM (2018) Engineering nanoparticles for targeting rheumatoid arthritis: past, present, and future trends. Nano Res 11(9): 4489-4506
    Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16(1): 71
    Peper SM, Lew R, Mikuls T, Brophy M, Rybin D, Wu H, O'Dell J (2017) Rheumatoid arthritis treatment after methotrexate: the durability of triple therapy versus etanercept. Arthritis Care Res 69(10): 1467-1472
    Pham CT (2011) Nanotherapeutic approaches for the treatment of rheumatoid arthritis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(6): 607-619
    Polyak B, Friedman G (2009) Magnetic targeting for site-specific drug delivery: applications and clinical potential. Expert Opin Drug Deliv 6(1): 53-70
    Quan L-d, Thiele GM, Tian J, Wang D (2008) The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat 18(7): 723-738
    Rajamäki K, Nordström T, Nurmi K, Åkerman KE, Kovanen PT, Öörni K, Eklund KK (2013) Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem 288(19): 13410-13419
    Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iqbal H (2019) Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 24(6): 1117
    Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, Hamilton JA (2009) Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182(12): 7974-7981
    Sagnella SM, Duong H, MacMillan A, Boyer C, Whan R, McCarroll JA, Davis TP, Kavallaris M (2014) Dextran-based doxorubicin nanocarriers with improved tumor penetration. Biomacromolecules 15(1): 262-275
    Sethuraman VA, Na K, Bae YH (2006) pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules 7(1): 64-70
    Shen R, Mu B, Du P, Liu P (2011) Preparation of photo-sensitive degradable polymeric nanocapsules from dendrimer grafted nano-silica templates. Soft Mater 9(4): 382-392
    Shenoy D, Little S, Langer R, Amiji M (2005) Poly (ethylene oxide)-modified poly (β-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations. Mol Pharm 2(5): 357-366
    Siafaka PI, Üstündağ Okur N, Karavas E, Bikiaris DN (2016) Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int J Mol Sci 17(9): 1440
    Singh A, Amiji MM (2018) Stimuli-responsive drug delivery systems. Royal Society of Chemistry, London
    Singh P, Pandit S, Mokkapati V, Garg A, Ravikumar V, Mijakovic I (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 19(7): 1979
    Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V, Yamamoto K (2018) Rheumatoid arthritis. Nat Rev Dis Primers 4(1): 18001
    Smolen JS, Aletaha D, Redlich K (2012) The pathogenesis of rheumatoid arthritis: new insights from old clinical data?. Nat Rev Rheumatol 8(4): 235
    Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J (2011) Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B Biointerfaces 87(2): 454-463
    Song R, Murphy M, Li C, Ting K, Soo C, Zheng Z (2018) Current development of biodegradable polymeric materials for biomedical applications. Drug Des Dev Ther 12: 3117
    Sostres C, Gargallo CJ, Arroyo MT, Lanas A (2010) Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol 24(2): 121-132
    Stuart MAC, Huck WT, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9(2): 101-113
    Ta T, Convertine AJ, Reyes CR, Stayton PS, Porter TM (2010) Thermosensitive liposomes modified with poly (N-isopropylacrylamide-co-propylacrylic acid) copolymers for triggered release of doxorubicin. Biomacromolecules 11(8): 1915-1920
    Uslu A, Güvenaltın Ş (2010) The investigation of structural and thermosensitive properties of new phosphazene derivatives bearing glycol and amino acid. Dalton Trans 39(44): 10685-10691
    van der Meel R, Sulheim E, Shi Y, Kiessling F, Mulder WJ, Lammers T (2019) Smart cancer nanomedicine. Nat Nanotechnol 14(11): 1007-1017
    Vandewalle J, Luypaert A, De Bosscher K, Libert C (2018) Therapeutic mechanisms of glucocorticoids. Trends Endocrinol Metab 29(1): 42-54
    Vats M, Mishra SK, Baghini MS, Chauhan DS, Srivastava R, De A (2017) Near infrared fluorescence imaging in nano-therapeutics and photo-thermal evaluation. Inter J Mol Sci 18(5): 924
    Wang S, Lv J, Meng S, Tang J, Nie L (2020) Recent Advances in Nanotheranostics for treat-to-target of rheumatoid arthritis. Adv Healthc Mater 9(6): 1901541
    Wen J, Anderson SM, Du J, Yan M, Wang J, Shen M, Lu Y, Segura T (2011) Controlled protein delivery based on enzyme-responsive nanocapsules. Adv Mater 23(39): 4549-4553
    Wilson DS, Dalmasso G, Wang L, Sitaraman SV, Merlin D, Murthy N (2010) Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat Mater 9(11): 923-928
    Xu Y, Mu J, Xu Z, Zhong H, Chen Z, Ni Q, Liang X-J, Guo S (2020) Modular acid-activatable acetone-based ketal-linked nanomedicine by dexamethasone prodrugs for enhanced anti-rheumatoid arthritis with low side effects. Nano Lett 20(4): 2558-2568
    Yang B, Jia H, Wang X, Chen S, Zhang X, Zhuo R, Feng J (2014a) Self-assembled vehicle construction via boronic acid coupling and host-guest interaction for serum-tolerant DNA transport and pH-responsive drug delivery. Adv Healthc Mater 3(4): 596-608
    Yoon S, Kim WJ, Yoo HS (2013) Dual-responsive breakdown of nanostructures with high doxorubicin payload for apoptotic anticancer therapy. Small 9(2): 284-293
    Yu C, Li X, Hou Y, Meng X, Wang D, Liu J, Sun F, Li Y (2019) Hyaluronic acid coated acid-sensitive nanoparticles for targeted therapy of adjuvant-induced arthritis in rats. Molecules 24(1): 146
    Zhang G, Jiang X (2019) Temperature responsive nanoparticles based on PEGylated polyaspartamide derivatives for drug delivery. Polymers 11(2): 316
    Zhang S, Wu L, Cao J, Wang K, Ge Y, Ma W, Qi X, Shen S (2018) Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids Surf B Biointerfaces 170: 224-232
    Zhang T, Sturgis TF, Youan B-BC (2011) pH-responsive nanoparticles releasing tenofovir intended for the prevention of HIV transmission. Eur J Pharm Biopharm 79(3): 526-536
    Zhao J, Zhang X, Sun X, Zhao M, Yu C, Lee RJ, Sun F, Zhou Y, Li Y, Teng L (2018) Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm 130: 39-47
    Zhao J, Zhao M, Yu C, Zhang X, Liu J, Cheng X, Lee RJ, Sun F, Teng L, Li Y (2017) Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomed 12: 6735-6746
    Zhao M, Biswas A, Hu B, Joo KI, Wang P, Gu Z, Tang Y (2011) Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 32(22): 5223-5230
    Zubris KA, Liu R, Colby A, Schulz MD, Colson YL, Grinstaff MW (2013) In vitro activity of paclitaxel-loaded polymeric expansile nanoparticles in breast cancer cells. Biomacromolecules 14(6): 2074-2082
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (516) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return