Volume 6 Issue 4
Mar.  2021
Turn off MathJax
Article Contents
Kangkun Mao, Jun Wang, Yi Xiao. Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophysics Reports, 2020, 6(4): 146-154. doi: 10.1007/s41048-020-00114-x
Citation: Kangkun Mao, Jun Wang, Yi Xiao. Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks. Biophysics Reports, 2020, 6(4): 146-154. doi: 10.1007/s41048-020-00114-x

Prediction of RNA secondary structure with pseudoknots using coupled deep neural networks

doi: 10.1007/s41048-020-00114-x
Funds:  Yi Xiao
  • Received Date: 12 June 2020
  • Rev Recd Date: 03 July 2020
  • Publish Date: 31 August 2020
  • Noncoding RNAs play important roles in cell and their secondary structures are vital for understanding their tertiary structures and functions. Many prediction methods of RNA secondary structures have been proposed but it is still challenging to reach high accuracy, especially for those with pseudoknots. Here we present a coupled deep learning model, called 2dRNA, to predict RNA secondary structure. It combines two famous neural network architectures bidirectional LSTM and U-net and only needs the sequence of a target RNA as input. Benchmark shows that our method can achieve state-of-the-art performance compared to current methods on a testing dataset. Our analysis also shows that 2dRNA can learn structural information from similar RNA sequences without aligning them.
  • loading
  • Agarap AFM (2018) Deep learning using rectified linear units(ReLU). arXiv:neural and evolutionary computing. https://www.arxiv-vanity.com/papers/1803.08375
    Bellaousov S, Mathews DH (2010) ProbKnot:fast prediction of RNA secondary structure including pseudoknots. RNA 16(10):1870-1880
    Bellaousov S, Reuter JS, Seetin MG, Mathews DH (2013)RNAstructure:web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res 41(W1):W471-W474
    Cao S, Chen SJ (2011) Physics-based de novo prediction of RNA 3D structures. J Phys Chem B 115(14):4216-4226
    Danaee P, Rouches M, Wiley M, Deng D, Huang L, Hendrix D (2018)bpRNA:large-scale automated annotation and analysis of RNA secondary structure. Nucleic Acids Res 46(11):5381-5394
    Das R, Karanicolas J, Baker D (2010) Atomic accuracy in predicting and designing noncanonical RNA structure. Nat Methods 7(4):291-294
    Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT:accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150-3152
    Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MA He X, Li S, Ou X, Wang J, Xiao Y (2019) Inference of RNA structural contacts by direct coupling analysis. Commun Inf Syst 19(3):279-297
    Hochreiter S, Schmidhuber J (1997) Long short-term memory.Neural Comput 9(8):1735-1780
    Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS, Tacker M, Schuster P (1994) Fast folding and comparison of RNA secondary structures. Monatshefte Fur Chemie 125(2):167-188
    Jain S, Schlick T (2017) F-RAG:generating atomic coordinates from RNA graphs by fragment assembly. J Mol Biol 429(23):3587-3605
    Janssen S, Giegerich R (2015) The RNA shapes studio. Bioinformatics 31(3):423-425
    Kingma DP, Ba JA (2014) A method for stochastic optimization.arXiv:1412.6980
    Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84-90
    Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions and reversals. Sov Phys Dokl 10(4):707-710
    Lin TY, Goyal P, Girshick R, He K, Dollar P (2018) Focal loss for dense object detection. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2018.2858826
    Lorenz R, Bernhart SH, Siederdissen CHZ, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) ViennaRNA Package 2.0.Algorithms Mol Biol. https://doi.org/10.1186/1748-7188-6-26
    Maizel JV Jr, Lenk RP (1981) Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci USA 78(12):7665-7669
    Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442-451
    Milletari F, Navab N, Ahmadi SA (2016) V-net:fully convolutional neural networks for volumetric medical image segmentation.Proceedings of 2016 Fourth International Conference on 3d Vision (3dv), 565-571
    Parisien M, Cruz JA, Westhof E, Major F (2009) New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA 15(10):1875-1885
    Proctor JR, Meyer IM (2013) COFOLD:an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res 41(9):e102. https://doi.org/10.1093/nar/gkt174
    Puton T, Kozlowski LP, Rother KM, Bujnicki JM (2013) CompaRNA:a server for continuous benchmarking of automated methods for RNA secondary structure prediction. Nucleic Acids Res 41(7):4307-4323
    Ronneberger O, Fischer P, Brox T (2015) U-Net:convolutional Networks for Biomedical Image Segmentation. Med Image Comput Comput-Assist Interv 9351:234-241
    Sato K, Kato Y, Hamada M, Akutsu T, Asai K (2011) IPknot:fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics 27(13):i85-93
    Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640-651
    Singh J, Hanson J, Paliwal K, Zhou Y (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 10:5407. https://doi.org/10.1038/s41467-019-13395-9
    Tan Z, Fu YH, Sharma G, Mathews DH (2017) TurboFold Ⅱ:RNA structural alignment and secondary structure prediction informed by multiple homologs. Nucleic Acids Res 45(20):11570-11581
    Wang J, Xiao Y (2017) Using 3dRNA for RNA 3-D structure prediction and evaluation. Curr Protoc Bioinformatics. https://doi.org/10.1002/cpbi.21
    Wang J, Mao K, Zhao Y, Zeng C, Xiang J, Zhang Y, Xiao Y (2017)Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis. Nucleic Acids Res 45(11):6299-6309
    Wang L, Liu Y, Zhong X, Liu H, Lu C, Li C, Zhang H (2019) DMfold:a novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base pair maximization principle. Front Genet 10:143. https://doi.org/10.3389/fgene.2019.00143
    Ward M, Datta A, Wise M, Mathews DH (2017) Advanced multiloop algorithms for RNA secondary structure prediction reveal that the simplest model is best. Nucleic Acids Res 45(14):8541-8550
    Xiyuan L, Dechao B, Liang S, Yang W, Shuangsang F, Hui L, Haitao L, Chunlong L, Wenzheng F, Runsheng C, Yi Z (2017) Using the NONCODE database resource. Curr Protoc Bioinform. https://doi.org/10.1002/cpbi.25
    Xu X, Zhao P, Chen SJ (2014) Vfold:a web server for RNA structure and folding thermodynamics prediction. PLoS ONE 9(9):e107504. https://doi.org/10.1371/journal.pone. 0107504
    Zhao Y, Li H, Fang SS, Kang Y, Wu W, Hao YJ, Li ZY, Bu DC, Sun NH, Zhang MQ, Chen RS (2016) NONCODE 2016:an informative and valuable data source of long non-coding RNAs. Nucleic Acids Res 44(D1):D203-D208
    Zhao Y, Wang J, Zeng C, Xiao Y (2018) Evaluation of RNA secondary structure prediction for both base-pairing and topology. Biophys Rep 4(3):123-132
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406-3415
    Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information.Nucleic Acids Res 9(1):133-148
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (358) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return