Volume 6 Issue 2-3
Feb.  2020
Turn off MathJax
Article Contents
Si-Ping Zhang, Qian Wang, Shuo-Wei Quan, Xiao-Quan Yu, Yong Wang, Ding-Ding Guo, Liang Peng, Hu-Yuan Feng, Yong-Xing He. Type II toxin-antitoxin system in bacteria: activation, function, and mode of action. Biophysics Reports, 2020, 6(2-3): 68-79. doi: 10.1007/s41048-020-00109-8
Citation: Si-Ping Zhang, Qian Wang, Shuo-Wei Quan, Xiao-Quan Yu, Yong Wang, Ding-Ding Guo, Liang Peng, Hu-Yuan Feng, Yong-Xing He. Type II toxin-antitoxin system in bacteria: activation, function, and mode of action. Biophysics Reports, 2020, 6(2-3): 68-79. doi: 10.1007/s41048-020-00109-8

Type II toxin-antitoxin system in bacteria: activation, function, and mode of action

doi: 10.1007/s41048-020-00109-8
Funds:  Hu-Yuan Feng, Yong-Xing He
  • Received Date: 10 May 2019
  • Rev Recd Date: 20 January 2020
  • Publish Date: 13 February 2020
  • The toxin-antitoxin (TA) system is composed of a stable toxin and an unstable antitoxin that neutralizes the toxin. Being perhaps the most studied among the different TA types, type II TA systems are widely distributed and often exist in multiple copies within chromosomes of eubacteria and archaea. Exhibiting diverse molecular activities such as RNases, kinases, and acetyltransferases, type II TA systems have been confirmed to be involved in diverse biological processes including plasmid maintenance, phage inhibition, persistence, stress response, and biofilm formation. In this review, we summarize the current state of the research in the type II TA field, emphasizing the activation mechanism, structure-function relationship, and biological functions of type II TA systems.
  • loading
  • Aakre CD, Phung TN, Huang D, Laub MT (2013) A bacterial toxin inhibits DNA replication elongation through a direct interaction with the beta sliding clamp. Mol Cell 52:617-628
    Alawneh AM, Qi D, Yonesaki T, Otsuka Y (2016) An ADPribosyltransferase Alt of bacteriophage T4 negatively regulates the Escherichia coli MazF toxin of a toxin-antitoxin module. Mol Microbiol 99:188-198
    Andrews ES, Arcus VL (2015) The mycobacterial PhoH2 proteins are type Ⅱ toxin antitoxins coupled to RNA helicase domains.Tuberculosis (Edinb) 95:385-394
    Arbing MA, Handelman SK, Kuzin AP, Verdon G, Wang C, Su M, Rothenbacher FP, Abashidze M, Liu M, Hurley JM, Xiao R, Acton T, Inouye M, Montelione GT, Woychik NA, Hunt JF (2010) Crystal structures of Phd-Doc, HigA, and YeeU establish multiple evolutionary links between microbial growth-regulating toxin-antitoxin systems. Structure 18:996-1010
    Bendtsen KL, Xu K, Luckmann M, Winther KS, Shah SA, Pedersen CNS, Brodersen DE (2017a) Toxin inhibition in C. crescentus VapBC1 is mediated by a flexible pseudo-palindromic protein motif and modulated by DNA binding. Nucleic Acids Res 45:2875-2886
    Bendtsen KL, Xu KH, Luckmann M, Winther KS, Shah SA, Pedersen CNS, Brodersen DE (2017b) Toxin inhibition in C.crescentus VapBC1 is mediated by a flexible pseudo-palindromic protein motif and modulated by DNA binding. Nucleic Acids Res 45:2875-2886
    Bobay BG, Andreeva A, Mueller GA, Cavanagh J, Murzin AG (2005)Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Lett 579:5669-5674
    Boggild A, Sofos N, Andersen KR, Feddersen A, Easter AD, Passmore LA, Brodersen DE (2012) The crystal structure of the intact E. coli RelBE toxin-antitoxin complex provides the structural basis for conditional cooperativity. Structure 20:1641-1648
    Bordes P, Cirinesi AM, Ummels R, Sala A, Sakr S, Bitter W, Genevaux P (2011) SecB-like chaperone controls a toxinantitoxin stress-responsive system in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 108:8438-8443
    Bordes P, Sala AJ, Ayala S, Texier P, Slama N, Cirinesi AM, Guillet V, Moureya L, Genevaux P (2016) Chaperone addiction of toxinantitoxin systems. Nature Commun 7:13339
    Brown BL, Grigoriu S, Kim Y, Arruda JM, Davenport A, Wood TK, Peti W, Page R (2009) Three dimensional structure of the MqsR:MqsA complex:a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties.PLoS Pathog 5:e1000706
    Brown BL, Wood TK, Peti W, Page R (2011) Structure of the Escherichia coli antitoxin MqsA (YgiT/b3021) bound to its gene promoter reveals extensive domain rearrangements and the specificity of transcriptional regulation. J Biol Chem 286:2285-2296
    Butt A, Higman VA, Williams C, Crump MP, Hemsley CM, Harmer N, Titball RW (2014) The HicA toxin from Burkholderia pseudomallei has a role in persister cell formation. Biochem J 459:333-344
    Castro-Roa D, Garcia-Pino A, De Gieter S, van Nuland NAJ, Loris R, Zenkin N (2013) The Fic protein Doc uses an inverted substrate to phosphorylate and inactivate EF-Tu. Nat Chem Biol 9:811-817
    Chan WT, Espinosa M, Yeo CC (2016) Keeping the wolves at bay:antitoxins of prokaryotic type Ⅱ toxin-antitoxin systems.Front Mol Biosci 3:9
    Cherny I, Rockah L, Gazit E (2005) The YoeB toxin is a folded protein that forms a physical complex with the unfolded YefM antitoxin. J Biol Chem 280:30063-30072
    Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, Helaine S (2016) A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell 63:86-96
    Dao-Thi MH, van Melderen L, De Genst E, Afif H, Buts L, Wyns L, Loris R (2005) Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 348:1091-1102
    Dienemann C, Boggild A, Winther KS, Gerdes K, Brodersen DE (2011) Crystal structure of the VapBC toxin-antitoxin complex from Shigella flexneri reveals a hetero-octameric DNAbinding assembly. J Mol Biol 414:713-722
    Donegan NP, Marvin JS, Cheung AL (2014) Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 196:4140-4151
    Donegan NP, Thompson ET, Fu Z, Cheung AL (2010) Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 192:1416-1422
    Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC (2014) A widespread bacteriophage abortive infection system functions through a type IV toxin-antitoxin mechanism. Nucleic Acids Res 42:4590-4605
    Engel P, Goepfert A, Stanger FV, Harms A, Schmidt A, Schirmer T, Dehio C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482:107-110
    Flynn JM, Neher SB, Kim YI, Sauer RT, Baker TA (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11:671-683
    Francuski D, Saenger W (2009) Crystal structure of the antitoxintoxin protein complex RelB-RelE from Methanococcus jannaschii. J Mol Biol 393:898-908
    Freire DM, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V, Cianci M, Tuukkanen A, Boudehen YM, Peixoto A, Botella L, Svergun DI, Schnappinger D, Schneider TR, Genevaux P, de Carvalho LPS, Wilmanns M, Parret AHA, Neyrolles O (2019) An NAD(+) phosphorylase toxin triggers mycobacterium tuberculosis cell death. Mol Cell 73(1282-1291):e8
    Garcia-Pino A, De Gieter S, Talavera A, De Greve H, Efremov RG, Loris R (2016) An intrinsically disordered entropic switch determines allostery in Phd-Doc regulation. Nat Chem Biol 12:490-496
    Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance function:postsegregational killing of plasmidfree cells. Proc Natl Acad Sci USA 83:3116-3120
    Germain E, Castro-Roa D, Zenkin N, Gerdes K (2013) Molecular mechanism of bacterial persistence by HipA. Mol Cell 52:248-254
    Germain E, Roghanian M, Gerdes K, Maisonneuve E (2015) Stochastic induction of persister cells by HipA through(p)ppGpp-mediated activation of mRNA endonucleases. Proc Natl Acad Sci USA 112:5171-5176
    Goormaghtigh F, Fraikin N, Putrins M, Hallaert T, Hauryliuk V, Garcia-Pino A, Sjodin A, Kasvandik S, Udekwu K, Tenson T, Kaldalu N, van Melderen L (2018) Reassessing the role of type Ⅱ toxin-antitoxin systems in formation of Escherichia coli type Ⅱ persister cells. MBio 9:e00640
    Guglielmini J, van Melderen L (2011) Bacterial toxin-antitoxin systems:translation inhibitors everywhere. Mob Genet Elements 1:283-290
    Guillet V, Bordes P, Bon C, Marcoux J, Gervais V, Sala AJ, Dos Reis S, Slama N, Mares-Mejia I, Cirinesi AM, Maveyraud L, Genevaux P, Mourey L (2019) Structural insights into chaperone addiction of toxin-antitoxin systems. Nat Commun 10:782
    Harms A, Brodersen DE, Mitarai N, Gerdes K (2018) Toxins, targets, and triggers:an overview of toxin-antitoxin biology.Mol Cell 70:768-784
    Harms A, Liesch M, Korner J, Quebatte M, Engel P, Dehio C (2017)A bacterial toxin-antitoxin module is the origin of interbacterial and inter-kingdom effectors of Bartonella. PLoS Genet 13:e1007077
    Harms A, Stanger FV, Scheu PD, de Jong IG, Goepfert A, Glatter T, Gerdes K, Schirmer T, Dehio C (2015) Adenylylation of gyrase and topo IV by ficT toxins disrupts bacterial DNA topology.Cell Rep 12:1497-1507
    Jiang Y, Pogliano J, Helinski DR, Konieczny I (2002) ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 44:971-979
    Jurenas D, van Melderen L, Garcia-Pino A (2019) Mechanism of regulation and neutralization of the AtaR-AtaT toxin-antitoxin system. Nat Chem Biol 15:285-294
    Kamada K, Hanaoka F, Burley SK (2003) Crystal structure of the MazE/MazF complex:molecular bases of antidote-toxin recognition. Mol Cell 11:875-884
    Kamphuis MB, Monti MC, van den Heuvel RH, Lopez-Villarejo J, Diaz-Orejas R, Boelens R (2007) Structure and function of bacterial kid-kis and related toxin-antitoxin systems. Protein Pept Lett 14:113-124
    Kaspy I, Rotem E, Weiss N, Ronin I, Balaban NQ, Glaser G (2013)HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase. Nat Commun 4:3001
    Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172-8180
    Khoo SK, Loll B, Chan WT, Shoeman RL, Ngoo L, Yeo CC, Meinhart A (2007) Molecular and structural characterization of the PezAT chromosomal toxin-antitoxin system of the human pathogen Streptococcus pneumoniae. J Biol Chem 282:19606-19618
    Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine:adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7:589-599
    Koga M, Otsuka Y, Lemire S, Yonesaki T (2011) Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system.Genetics 187:123-130
    Leplae R, Geeraerts D, Hallez R, Guglielmini J, Dreze P, van Melderen L (2011) Diversity of bacterial type Ⅱ toxinantitoxin systems:a comprehensive search and functional analysis of novel families. Nucleic Acids Res 39:5513-5525
    Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826-830
    Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357-372
    Li GY, Zhang Y, Inouye M, Ikura M (2009) Inhibitory mechanism of Escherichia coli RelE-RelB toxin-antitoxin module involves a helix displacement near an mRNA interferase active site.J Biol Chem 284:14628-14636
    Liang Y, Gao Z, Wang F, Zhang Y, Dong Y, Liu Q (2014) Structural and functional characterization of Escherichia coli toxinantitoxin complex DinJ-YafQ. J Biol Chem 289:21191-21202
    Loris R, Garcia-Pino A (2014) Disorder- and dynamics-based regulatory mechanisms in toxin-antitoxin modules. Chem Rev 114:6933-6947
    Lu CH, Nakayasu ES, Zhang LQ, Luo ZQ (2016) Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation. Sci Signal 9:ra11
    Madl T, van Melderen L, Mine N, Respondek M, Oberer M, Keller W, Khatai L, Zangger K (2006) Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. J Mol Biol 364:170-185
    Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154:1140-1150
    Marimon O, Teixeira JM, Cordeiro TN, Soo VW, Wood TL, Mayzel M, Amata I, Garcia J, Morera A, Gay M, Vilaseca M, Orekhov VY, Wood TK, Pons M (2016) An oxygen-sensitive toxin-antitoxin system. Nat Commun 7:13634
    Mate MJ, Vincentelli R, Foos N, Raoult D, Cambillau C, OrtizLombardia M (2012) Crystal structure of the DNA-bound VapBC2 antitoxin/toxin pair from Rickettsia felis. Nucleic Acids Res 40:3245-3258
    Mattison K, Wilbur JS, So M, Brennan RG (2006) Structure of FitAB from Neisseria gonorrhoeae bound to DNA reveals a tetramer of toxin-antitoxin heterodimers containing pin domains and ribbon-helix-helix motifs. J Biol Chem 281:37942-37951
    Meinhart A, Alonso JC, Strater N, Saenger W (2003) Crystal structure of the plasmid maintenance system epsilon/zeta:functional mechanism of toxin zeta and inactivation by epsilon 2 zeta 2 complex formation. Proc Natl Acad Sci USA 100:1661-1666
    Moyed HS, Bertrand KP (1983) hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J Bacteriol 155:768-775
    Muthuramalingam M, White JC, Bourne CR (2016) Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins 8:214
    Oberer M, Zangger K, Gruber K, Keller W (2007) The solution structure of ParD, the antidote of the ParDE toxin antitoxin module, provides the structural basis for DNA and toxin binding. Protein Sci 16:1676-1688
    Page R, Peti W (2016) Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 12:208-214
    Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33:966-976
    Pedersen K, Zavialov AV, Pavlov MY, Elf J, Gerdes K, Ehrenberg M (2003) The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site. Cell 112:131-140
    Piscotta FJ, Jeffrey PD, Link AJ (2019) ParST is a widespread toxinantitoxin module that targets nucleotide metabolism. Proc Natl Acad Sci USA 116:826-834
    Puri N, Karzai AW (2017) HspQ functions as a unique specificityenhancing factor for the AAA plus lon protease. Mol Cell 66:672-683
    Ramisetty BC, Santhosh RS (2016) Horizontal gene transfer of chromosomal type Ⅱ toxin-antitoxin systems of Escherichia coli. FEMS Microbiol Lett 363:fnv238
    Ramisetty BCM, Ghosh D, Chowdhury MR, Santhosh RS (2016)What is the link between stringent response, endoribonuclease encoding type Ⅱ toxin-antitoxin systems and persistence? Front Microbiol 8:458
    Rocker A, Meinhart A (2015) A cis-acting antitoxin domain within the chromosomal toxin-antitoxin module EzeT of Escherichia coli quenches toxin activity. Mol Microbiol 97:589-604
    Rocker A, Meinhart A (2016) Type Ⅱ toxin:antitoxin systems.More than small selfish entities? Curr Genet 62:287-290
    Schreiter ER, Drennan CL (2007) Ribbon-helix-helix transcription factors:variations on a theme. Nat Rev Microbiol 5:710-720
    Schumacher MA, Piro KM, Xu W, Hansen S, Lewis K, Brennan RG (2009) Molecular mechanisms of HipA-mediated multidrug tolerance and its neutralization by HipB. Science 323:396-401
    Schureck MA, Maehigashi T, Miles SJ, Marquez J, Cho SE, Erdman R, Dunham CM (2014) Structure of the Proteus vulgaris HigB-(HigA)2-HigB toxin-antitoxin complex. J Biol Chem 289:1060-1070
    Semanjski M, Germain E, Bratl K, Kiessling A, Gerdes K, Macek B (2018) The kinases HipA and HipA7 phosphorylate different substrate pools in Escherichia coli to promote multidrug tolerance. Sci Signal 11:eaat5750
    Sevin EW, Barloy-Hubler F (2007) RASTA-Bacteria:a web-based tool for identifying toxin-antitoxin loci in prokaryotes.Genome Biol 8:R155
    Skjerning RB, Senissar M, Winther KS, Gerdes K, Brodersen DE (2019) The RES domain toxins of RES-Xre toxin-antitoxin modules induce cell stasis by degrading NAD. Mol Microbiol 111:221-236
    Smith CK, Baker TA, Sauer RT (1999) Lon and Clp family proteases and chaperones share homologous substrate-recognition domains. Proc Natl Acad Sci USA 96:6678-6682
    Stanger FV, Harms A, Dehio C, Schirmer T (2016) Crystal structure of the Escherichia coli fic toxin-like protein in complex with its cognate antitoxin. PLoS ONE 11:e0163654
    Takagi H, Kakuta Y, Okada T, Yao M, Tanaka I, Kimura M (2005)Crystal structure of archaeal toxin-antitoxin RelE-RelB complex with implications for toxin activity and antitoxin effects.Nat Struct Mol Biol 12:327-331
    Talavera A, Tamman H, Ainelo A, Konijnenberg A, Hadzi S, Sobott F, Garcia-Pino A, Horak R, Loris R (2019) A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT. Nat Commun 10:972
    Tamman H, Ainelo A, Ainsaar K, Horak R (2014) A moderate toxin, GraT, modulates growth rate and stress tolerance of Pseudomonas putida. J Bacteriol 196:157-169
    Tamman H, Ainelo A, Tagel M, Horak R (2015) Stability of the GraA antitoxin depends on growth phase, ATP Level, and global regulator MexT. J Bacteriol 198:787-796
    Tripathi A, Dewan PC, Siddique SA, Varadarajan R (2014) MazFinduced growth inhibition and persister generation in Escherichia coli. J Biol Chem 289:4191-4205
    Turnbull KJ, Gerdes K (2017) HicA toxin of Escherichia coli derepresses hicAB transcription to selectively produce HicB antitoxin. Mol Microbiol 731(104):781-792
    Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R, Wood TK (2011) Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol 7:359-366
    Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, SanchezTorres V, Quiroga C, Zheng K, Herrmann T, Peti W, Benedik MJ, Page R, Wood TK (2012) A new type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat Chem Biol 8:855-861
    Wang Y, Zhang SP, Zhang MY, Kempher ML, Guo DD, Han JT, Tao X, Wu Y, Zhang LQ, He YX (2019) The antitoxin MqsA homologue in Pseudomonas fluorescens 2P24 has a rewired regulatory circuit through evolution. Environ Microbiol 21:1740-1756
    Wilcox B, Osterman I, Serebryakova M, Lukyanov D, Komarova E, Gollan B, Morozova N, Wolf YI, Makarova KS, Helaine S, Sergiev P, Dubiley S, Borukhov S, Severinov K (2018)Escherichia coli ItaT is a type Ⅱ toxin that inhibits translation by acetylating isoleucyl-tRNAIle. Nucleic Acids Res 46:7873-7885
    Wintjens R, Rooman M (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes.J Mol Biol 262:294-313
    Wu WF, Zhou YN, Gottesman S (1999) Redundant in vivo proteolytic activities of Escherichia coli lon and the ClpYQ (HslUV) protease. J Bacteriol 181:3681-3687
    Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, Deng Z, Ou HY (2018)TADB 2.0:an updated database of bacterial type Ⅱ toxinantitoxin loci. Nucleic Acids Res 46:D749-D753
    Xu K, Dedic E, Brodersen DE (2016) Structural analysis of the active site architecture of the VapC toxin from Shigella flexneri. Proteins 84:892-899
    Zhang Y, Zhang J, Hoeflich KP, Ikura M, Qing G, Inouye M (2003)MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. Mol Cell 12:913-923
    Zhu L, Inoue K, Yoshizumi S, Kobayashi H, Zhang Y, Ouyang M, Kato F, Sugai M, Inouye M (2009) Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, which is unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol 191:3248-3255
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (448) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return