Volume 4 Issue 5
Nov.  2018
Turn off MathJax
Article Contents
Li Wang, Xian Chen, Xuzhen Guo, Jiasong Li, Qi Liu, Fuying Kang, Xudong Wang, Cheng Hu, Haiping Liu, Weimin Gong, Wei Zhuang, Xiaohong Liu, Jiangyun Wang. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion[J]. Biophysics Reports, 2018, 4(5): 273-285. doi: 10.1007/s41048-018-0073-z
Citation: Li Wang, Xian Chen, Xuzhen Guo, Jiasong Li, Qi Liu, Fuying Kang, Xudong Wang, Cheng Hu, Haiping Liu, Weimin Gong, Wei Zhuang, Xiaohong Liu, Jiangyun Wang. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion[J]. Biophysics Reports, 2018, 4(5): 273-285. doi: 10.1007/s41048-018-0073-z

Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion

doi: 10.1007/s41048-018-0073-z
Funds:  This work was financially supported in part by Grants from the National Natural Science Foundation of China (21750003, 91527302, U1632133, 31628004, 21473237, and 31628004); the National Key Research and Development Program of China (2017YFA0503704 and 2016YFA0501502); and the Key Research Program of Frontier Sciences, CAS (QYZDB-SSWSMC032).
More Information
  • Corresponding author: Wei Zhuang, Xiaohong Liu, Jiangyun Wang
  • Received Date: 24 May 2018
  • Publish Date: 02 November 2018
  • Fluorescent proteins (FPs) with emission wavelengths in the far-red and infrared regions of the spectrum provide powerful tools for deep-tissue and super-resolution imaging. The development of red-shifted FPs has evoked widespread interest and continuous engineering efforts. In this article, based on a computational design and genetic code expansion, we report a rational approach to significantly expand and red-shift the chromophore of green fluorescent protein (GFP). We applied computational calculations to predict the excitation and emission wavelengths of a FP chromophore harboring unnatural amino acids (UAA) and identify in silico an appropriate UAA, 2-amino-3-(6-hydroxynaphthalen-2-yl)propanoic acid (naphthol-Ala). Our methodology allowed us to formulate a GFP variant (cpsfGFP-66-Naphthol-Ala) with red-shifted absorbance and emission spectral maxima exceeding 60 and 130 nm, respectively, compared to those of GFP. The GFP chromophore is formed through autocatalytic post-translational modification to generate a planar 4-(p-hydroxybenzylidene)-5-imidazolinone chromophore. We solved the crystal structure of cpsfGFP-66-naphthol-Ala at 1.3 Å resolution and demonstrated the formation of a much larger conjugated π-system when the phenol group is replaced by naphthol. These results explain the significant red-shifting of the excitation and emission spectra of cpsfGFP-66-naphthol-Ala.
  • loading
  • Bogdanov AM, Mishin AS, Yampolsky IV, Belousov VV, Chudakov DM, Subach FV, Verkhusha VV, Lukyanov S, Lukyanov KA (2009) Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5:459-461
    Chang H, Zhang MS, Ji W, Chen JJ, Zhang YD, Liu B, Lu JZ, Zhang JL, Xu PY, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci USA 109:4455-4460
    Chen S, Tsao ML (2013) Genetic incorporation of a 2-naphthol group into proteins for site-specific azo coupling. Bioconjugate Chem 24:1645-1649
    Chica RA, Moore MM, Allen BD, Mayo SL (2010) Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries. Proc Natl Acad Sci USA 107:20257-20262
    Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010)Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103-1163
    Elowitz MB, Surette MG, Wolf PE, Stock J, Leibler S (1997)Photoactivation turns green fluorescent protein red. Curr Biol 7:809-812
    Enterina JR, Wu LS, Campbell RE (2015) Emerging fluorescent protein technologies. Curr Opin Chem Biol 27:10-17
    Gaussian 16, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian, Inc., Wallingford CT Grimm JB, English BP, Chen JJ, Slaughter JP, Zhang ZJ, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12:244
    Laurent AD, Jacquemin D (2013) TD-DFT benchmarks:a review.Int J Quantum Chem 113:2019-2039
    Liu XH, Li JS, Hu C, Zhou Q, Zhang W, Hu MR, Zhou JZ, Wang JY (2013)Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Edit 52:4805-4809
    Mou Y, Huang PS, Hsu FC, Huang SJ, Mayo SL (2015) Computational design and experimental verification of a symmetric protein homodimer. Proc Natl Acad Sci USA 112:10714-10719
    Newman RH, Fosbrink MD, Zhang J (2011) Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Chem Rev 111:3614-3666
    Nienhaus K, Nienhaus GU (2014) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 43:1088-1106
    Niu W, Guo JT (2013) Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Mol BioSyst 9:2961-2970
    Saha R, Verma PK, Rakshit S, Saha S, Mayor S, Pal SK (2013) Light driven ultrafast electron transfer in oxidative redding of Green Fluorescent Proteins. Sci Rep 3:1580
    Sengupta P, van Engelenburg SB, Lippincott-Schwartz J (2014)Superresolution imaging of biological systems using photoactivated localization microscopy. Chem Rev 114:3189-3202
    Shaner NC, Patterson GH, Davidson MW (2011) Advances in fluorescent protein technology (vol 120, pg 4247, 2007).J Cell Sci 124:2321
    Shcherbo D, Shemiakina Ⅱ, Ryabova AV, Luker KE, Schmidt BT, Souslova EA, Gorodnicheva TV, Strukova L, Shidlovskiy KM, Britanova OV, Zaraisky AG, Lukyanov KA, Loschenov VB, Luker GD, Chudakov DM (2010) Near-infrared fluorescent proteins. Nat Methods 7:827-U1520
    Shu XK, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, Steinbach PA, Tsien RY (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome.Science 324:804-807
    Subach FV, Verkhusha VV (2012) Chromophore transformations in red fluorescent proteins. Chem Rev 112:4308-4327
    Subach FV, Piatkevich KD, Verkhusha VV (2011) Directed molecular evolution to design advanced red fluorescent proteins.Nat Methods 8:1019-1026
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(94) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return