Volume 4 Issue 4
Aug.  2018
Turn off MathJax
Article Contents
Xue Xiao, Liping Dong, Yi-Zhou Wang, Peng-Ye Wang, Ming Li, Guohong Li, Ping Chen, Wei Li. Dissection of structural dynamics of chromatin fibers by single-molecule magnetic tweezers[J]. Biophysics Reports, 2018, 4(4): 222-232. doi: 10.1007/s41048-018-0064-0
Citation: Xue Xiao, Liping Dong, Yi-Zhou Wang, Peng-Ye Wang, Ming Li, Guohong Li, Ping Chen, Wei Li. Dissection of structural dynamics of chromatin fibers by single-molecule magnetic tweezers[J]. Biophysics Reports, 2018, 4(4): 222-232. doi: 10.1007/s41048-018-0064-0

Dissection of structural dynamics of chromatin fibers by single-molecule magnetic tweezers

doi: 10.1007/s41048-018-0064-0
Funds:  This work was supported by Grants from the National Natural Science Foundation of China (11474346, 31471218, 31630041, 31525013, 31521002 and 61275192), the Key Research Program of Frontier Sciences, CAS (QYZDB-SSWSLH045, QYZDY-SSW-SMC020), the Youth Innovation Promotion Association CAS (2015071), the Ministry of Science and Technology of China (2017YFA0504200, 2015CB856200), (HHMI International Research Scholar Grant (55008737),and the National Key Research and Development Program (2016YFA0301500).
More Information
  • Corresponding author: Ping Chen, Wei Li
  • Received Date: 26 June 2018
  • Publish Date: 01 August 2018
  • The accessibility of genomic DNA, as a key determinant of gene-related processes, is dependent on the packing density and structural dynamics of chromatin fiber. However, due to the highly dynamic and heterogeneous properties of chromatin fiber, it is technically challenging to study these properties of chromatin. Here, we report a strategy for dissecting the dynamics of chromatin fibers based on singlemolecule magnetic tweezers. Using magnetic tweezers, we can manipulate the chromatin fiber and trace its extension during the folding and unfolding process under tension to investigate the dynamic structural transitions at single-molecule level. The highly accurate and reliable in vitro single-molecule strategy provides a new research platform to dissect the structural dynamics of chromatin fiber and its regulation by different epigenetic factors during gene expression.
  • loading
  • Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460-465
    Bickmore WA, van Steensel B (2013) Genome architecture:domain organization of interphase chromosomes. Cell 152:1270-1284
    Bintu L, Ishibashi T, Dangkulwanich M, Wu Y-Y, Lubkowska L, Kashlev M, Bustamante C (2012) Nucleosomal elements that control the topography of the barrier to transcription. Cell 151:738-749
    Brower-Toland BD, Smith CL, Yeh RC, Lis JT, Peterson CL, Wang MD (2002) Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc Natl Acad Sci USA 99:1960
    Chen P, Zhao J, Wang Y, Wang M, Long H, Liang D, Huang L, Wen Z, Li W, Li X, Feng H, Zhao H, Zhu P, Li M, Wang QF, Li G (2013) H3.3 actively marks enhancers and primes gene transcription via opening higher-ordered chromatin. Genes Dev 27:2109-2124
    Chen Y, Tokuda JM, Topping T, Meisburger SP, Pabit SA, Gloss LM, Pollack L (2016) Asymmetric unwrapping of nucleosomal DNA propagates asymmetric opening and dissociation of the histone core. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1611118114
    Cnossen JP, Dulin D, Dekker NH (2014) An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev Sci Instrum. https://doi.org/10.1063/1.4898178
    Daldrop P, Brutzer H, Huhle A, Kauert DJ, Seidel R (2015) Extending the range for force calibration in magnetic tweezers. Biophys J 108:2550-2561
    Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt HJ (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70:2437-2441
    Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23-44
    Eeftens JM, Bisht S, Kerssemakers J, Kschonsak M, Haering CH, Dekker C (2017) Real-time detection of condensin-driven DNA compaction reveals a multistep binding mechanism.EMBO J. https://doi.org/10.15252/embj.201797596
    Fierz B, Chatterjee C, McGinty RK, Bar-Dagan M, Raleigh DP, Muir TW (2011) Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nat Chem Biol 7:113-119
    Fleming AB, Kao C-F, Hillyer C, Pikaart M, Osley M (2008) H2B ubiquitylation plays a role in nucleosome dynamics during transcription elongation. Mol Cell 31:57-66
    Fulconis R, Mine J, Bancaud A, Dutreix M, Viovy J-L (2006) Mechanism of RecA-mediated homologous recombination revisited by single molecule nanomanipulation. EMBO J 25:4293-4304
    Georgel PT, Horowitz-Scherer RA, Adkins N, Woodcock CL, Wade PA, Hansen JC (2003) Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation. J Biol Chem 278:32181-32188
    Gosse C, Croquette V (2002) Magnetic tweezers:micromanipulation and force measurement at the molecular level. Biophys J 82:3314-3329
    Graves ET, Duboc C, Fan J, Stransky F, Leroux-Coyau M, Strick TR (2015) A dynamic DNA-repair complex observed by correlative single-molecule nanomanipulation and fluorescence. Nat Struct Mol Biol 22:452-457
    Hall MA, Shundrovsky A, Bai L, Fulbright RM, Lis JT, Wang MD (2009) High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat Struct Mol Biol 16:124
    Huhle A, Klaue D, Brutzer H, Daldrop P, Joo S, Otto O, Keyser UF, Seidel R (2015) Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nat Commun 6:5885
    Klaue D, Seidel R (2009) Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Phys Rev Lett 102:028302
    Koster DA, Croquette V, Dekker C, Shuman S, Dekker NH (2005) Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434:671
    Kruithof M, Chien F-T, Routh A, Logie C, Rhodes D, van Noort J (2009) Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30-nm chromatin fiber. Nat Struct Mol Biol 16:534
    Lansdorp BM, Saleh OA (2012) Power spectrum and Allan variance methods for calibrating single-molecule videotracking instruments. Rev Sci Instrum 83:025115
    Le S, Yao M, Chen J, Efremov AK, Azimi S, Yan J (2015) Disturbance-free rapid solution exchange for magnetic tweezers single-molecule studies. Nucleic Acids Res.https://doi.org/10.1093/nar/gkv554
    Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10:354-357
    Li G, Reinberg D (2011) Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev 21:175-186
    Li G, Margueron R, Hu G, Stokes D, Wang Y-H, Reinberg D (2010) Highly compacted chromatin formed in vitro reflects the dynamics of transcription activation in vivo. Mol Cell 38:41-53
    Li JH, Lin WX, Zhang B, Nong DG, Ju HP, Ma JB, Xu CH, Ye FF, Xi XG, Li M, Lu Y, Dou SX (2016a) Pif1 is a force-regulated helicase. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw295
    Li W, Chen P, Yu J, Dong L, Liang D, Feng J, Yan J, Wang P-YY, Li Q, Zhang Z, Li M, Li G (2016b) FACT remodels the tetranucleosomal unit of chromatin fibers for gene transcription. Mol Cell 64:120-133
    Li X, Liu H, Cheng L (2016c) Symmetry-mismatch reconstruction of genomes and associated proteins within icosahedral viruses using cryo-EM. Biophys Rep 2:25-32
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251-260
    Mahamdeh M, Schäffer E (2009) Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. Opt Express 17:17190-17199
    Maier B, Bensimon D, Croquette V (2000) Replication by a single DNA polymerase of a stretched single-stranded DNA. Proc Natl Acad Sci USA 97:12002-12007
    Meng H, Andresen K, van Noort J (2015) Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res 43:3578-3590
    Merkel R, Nassoy P, Leung A, Ritchie K, Evans E (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50
    Min D, Jefferson RE, Bowie JU, Yoon T-YY (2015) Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol. https://doi.org/10.1038/nchembio.1939
    Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266:257
    Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787-2809
    Ngo TTM, Ha T (2015) Nucleosomes undergo slow spontaneous gaping. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv276
    Odijk T (1995) Stiff chains and filaments under tension. Macromolecules 28:7016-7018
    Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, Reinberg D (2006) Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase Ⅱ.Cell 125:703-717
    Pincet F, Husson J (2005) The solution to the streptavidin-biotin paradox:the influence of history on the strength of single molecular bonds. Biophys J 89:4374-4381
    Piontek MC, Roos WH (2018) Atomic force microscopy:an introduction. Methods Mol Biol (Clifton NJ) 1665:243-258
    Richmond TJ, Davey CA (2003) The structure of DNA in the nucleosome core. Nature 423:145-150
    Seol Y, Strub M-PP, Neuman KC (2016) Single molecule measurements of DNA helicase activity with magnetic tweezers and ttest based step-finding analysis. Methods (S Diego Calif) 105:119-127
    Simpson NB, McGloin D, Dholakia K, Allen L, Padgett MJ (1998) Optical tweezers with increased axial trapping efficiency. J Mod Opt 45:1943-1949
    Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu R-MM, Zhu P, Li G (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science (NY NY) 344:376-380
    Strick TR, Croquette V, Bensimon D (1998) Homologous pairing in stretched supercoiled DNA. Proc Natl Acad Sci USA 95:10579-10583 te Velthuis AJW, Kerssemakers JWJ, Lipfert J, Dekker NH (2010) Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys J 99:1292-1302
    van Loenhout MT, Kerssemakers JW, De Vlaminck I, Dekker C (2012) Non-bias-limited tracking of spherical particles, enabling nanometer resolution at low magnification. Biophys J 102:2362-2371
    Vilfan ID, Lipfert J, Koster DA, Lemay SG, Dekker NH (2009) Magnetic tweezers for single-molecule experiments. In:Hinterdorfer P, Oijen A (eds) Handbook of single-molecule biophysics. Springer, New York, pp 371-395
    Yan J, Skoko D, Marko JF (2004) Near-field-magnetic-tweezer manipulation of single DNA molecules. Phys Rev E 70:011905
    Yan J, Maresca TJ, Skoko D, Adams CD, Xiao B, Christensen MO, Heald R, Marko JF (2007) Micromanipulation studies of chromatin fibers in Xenopus egg extracts reveal ATPdependent chromatin assembly dynamics. Mol Biol Cell 18:464-474
    Yuan G, Le S, Yao M, Qian H, Zhou X, Yan J, Chen H (2017) Elasticity of the transition state leading to an unexpected mechanical stabilization of titin immunoglobulin domains. Angew Chem Int Ed 56:5490-5493
    Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259-266
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (113) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return