Xuejun C. Zhang, Ye Zhou, Can Cao. Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert?. Biophysics Reports, 2018, 4(3): 115-122. doi: 10.1007/s41048-018-0056-0
Citation: Xuejun C. Zhang, Ye Zhou, Can Cao. Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert?. Biophysics Reports, 2018, 4(3): 115-122. doi: 10.1007/s41048-018-0056-0

Proton transfer during class-A GPCR activation: do the CWxP motif and the membrane potential act in concert?

doi: 10.1007/s41048-018-0056-0
Funds:  This work was supported by the Ministry of Science and Technology (China) (2015CB910104), the Chinese Academy of Sciences (XDB08020301), and National Natural Science Foundation of China (31470745).
More Information
  • Corresponding author: Xuejun C. Zhang
  • Received Date: 19 March 2018
  • Rev Recd Date: 10 April 2018
  • Publish Date: 30 June 2018
  • loading
  • Attwood TK, Findlay JB (1994) Fingerprinting G-protein-coupled receptors. Protein Eng 7:195-203
    Awoonor-Williams E, Rowley CN (2016) Evaluation of methods for the calculation of the pKa of cysteine residues in proteins.J Chem Theory Comput 12:4662-4673
    Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366-428
    Barchad-Avitzur O, Priest MF, Dekel N, Bezanilla F, Parnas H, BenChaim Y (2016) A novel voltage sensor in the orthosteric binding site of the M2 muscarinic receptor. Biophys J 111:1396-1408
    Ben-Chaim Y, Chanda B, Dascal N, Bezanilla F, Parnas I, Parnas H (2006) Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor. Nature 444:106-109
    Biebermann H, Winkler F, Handke D, Teichmann A, Gerling B, Cameron F, Eichhorst J, Gruters A, Wiesner B, Kuhnen P, Krude H, Kleinau G (2012) New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family A GPCR. J Clin Endocrinol Metab 97:E228-E232
    Birk A, Rinne A, Bunemann M (2015) Membrane potential controls the efficacy of catecholamine-induced beta1-adrenoceptor activity. J Biol Chem 290:27311-27320
    Callis PR (1997) 1La and 1Lb transitions of tryptophan:applications of theory and experimental observations to fluorescence of proteins. Methods Enzymol 278:113-150
    Eddy MT, Lee MY, Gao ZG, White KL, Didenko T, Horst R, Audet M, Stanczak P, McClary KM, Han GW, Jacobson KA, Stevens RC, Wüthrich K (2018) Allosteric coupling of drug binding and intracellular signaling in the A2A adenosine receptor. Cell 172(68-80):e12
    Flock T, Hauser AS, Lund N, Gloriam DE, Balaji S, Babu MM (2017) Selectivity determinants of GPCR-G-protein binding. Nature 545:317-322
    Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256-1272
    Hill T (1985) Cooperativity theory in biochentistry:steady-state and equilibrium systems. Springer, New York
    Holst B, Nygaard R, Valentin-Hansen L, Bach A, Engelstoft MS, Petersen PS, Frimurer TM, Schwartz TW (2010) A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors. J Biol Chem 285:3973-3985
    Hulme EC (2013) GPCR activation:a mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34:67-84
    Isberg V, Mordalski S, Munk C, Rataj K, Harpsoe K, Hauser AS, Vroling B, Bojarski AJ, Vriend G, Gloriam DE (2016) GPCRdb:an information system for G protein-coupled receptors. Nucleic Acids Res 44:D356-D364
    Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MHE, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro N, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JCH, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561-567
    Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33:17-27
    Kolakowski LF Jr (1994) GCRDb:a G-protein-coupled receptor database. Recept Channels 2:1-7
    Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232-236
    Lu GY, Xu YZ, Zhang K, Xiong Y, Li H, Cui L, Wang XP, Lou JZ, Zhai YJ, Sun F, Zhang XC (2017) Crystal structure of E. coli apolipoprotein N-acyl transferase. Nat Commun 8:15948
    Mahaut-Smith MP, Martinez-Pinna J, Gurung IS (2008) A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29:421-429
    Marino SM, Gladyshev VN (2010) Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J Mol Biol 404:902-916
    Nygaard R, Frimurer TM, Holst B, Rosenkilde MM, Schwartz TW (2009) Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30:249-259
    Olivella M, Caltabiano G, Cordomi A (2013) The role of Cysteine 6.47 in class A GPCRs. BMC Struct Biol 13:3
    Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin:a G protein-coupled receptor. Science 289:739-745
    Pei Y, Mercier RW, Anday JK, Thakur GA, Zvonok AM, Hurst D, Reggio PH, Janero DR, Makriyannis A (2008) Ligand-binding architecture of human CB2 cannabinoid receptor:evidence for receptor subtype-specific binding motif and modeling GPCR activation. Chem Biol 15:1207-1219
    Picone RP, Khanolkar AD, Xu W, Ayotte LA, Thakur GA, Hurst DP, Abood ME, Reggio PH, Fournier DJ, Makriyannis A (2005) (-)-70-Isothiocyanato-11-hydroxy-10,10-dimethylheptylhexahydrocannabinol(AM841), a high-affinity electrophilic ligand, interacts covalently with a cysteine in helix six and activates the CB1 cannabinoid receptor. Mol Pharmacol 68:1623-1635
    Poole LB (2015) The basics of thiols and cysteines in redox biology and chemistry. Free Radic Biol Med 80:148-157
    Rasmussen SG, Jensen AD, Liapakis G, Ghanouni P, Javitch JA, Gether U (1999) Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor:constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol Pharmacol 56:175-184
    Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549-555
    Rinne A, Birk A, Bunemann M (2013) Voltage regulates adrenergic receptor function. Proc Natl Acad Sci USA 110:1536-1541
    Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318:1266-1273
    Rothschild KJ, Marti T, Sonar S, He YW, Rath P, Fischer W, Khorana HG (1993) Asp96 deprotonation and transmembrane alphahelical structural changes in bacteriorhodopsin. J Biol Chem 268:27046-27052
    Sahlholm K, Marcellino D, Nilsson J, Fuxe K, Arhem P (2008) Voltage-sensitivity at the human dopamine D2S receptor is agonist-specific. Biochem Biophys Res Commun 377:1216-1221
    Saint Clair EC, Ogren JI, Mamaev S, Russano D, Kralj JM, Rothschild KJ (2012) Near-IR resonance Raman spectroscopy of archaerhodopsin 3:effects of transmembrane potential. J Phys Chem B 116:14592-14601
    Schiffer M, Chang CH, Stevens FJ (1992) The functions of tryptophan residues in membrane proteins. Protein Eng 5:213-214
    Schwartz TW, Rosenkilde MM (1996) Is there a ‘lock’ for all agonist ‘keys’ in 7TM receptors? Trends Pharmacol Sci 17:213-216
    Shi L, Liapakis G, Xu R, Guarnieri F, Ballesteros JA, Javitch JA (2002) Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. J Biol Chem 277:40989-40996
    Venkatakrishnan AJ, Deupi X, Lebon G, Heydenreich FM, Flock T, Miljus T, Balaji S, Bouvier M, Veprintsev DB, Tate CG, Schertler GF, Babu MM (2016) Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region. Nature 536:484-487
    Zhang XC, Sun K, Zhang L, Li X, Cao C (2013) GPCR activation:protonation and membrane potential. Protein Cell 4:747-760
    Zhang XC, Cao C, Zhou Y, Zhao Y (2014) Proton transfer-mediated GPCR activation. Protein Cell 6:12-17
    Zhang XC, Zhou Y, Cao C (2015) Thermodynamics of GPCR activation. Biophys Rep 1:115-119
    Zhang XC, Liu M, Lu G, Heng J (2018) Thermodynamic secrets of multidrug resistance:a new take on transport mechanisms of secondary active antiporters. Protein Sci 27(3):595-613
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (263) PDF downloads(239) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return