Jiajun Fu, Haining Zhang, Wenming Huang, Xinyu Zhu, Yi Sheng, Eli Song, Tao Xu. AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans. Biophysics Reports, 2018, 4(1): 17-24. doi: 10.1007/s41048-018-0046-2
Citation: Jiajun Fu, Haining Zhang, Wenming Huang, Xinyu Zhu, Yi Sheng, Eli Song, Tao Xu. AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans. Biophysics Reports, 2018, 4(1): 17-24. doi: 10.1007/s41048-018-0046-2

AIM interneurons mediate feeding suppression through the TYRA-2 receptor in C. elegans

doi: 10.1007/s41048-018-0046-2
Funds:  This work was supported by grants from the Ministry of Science and Technology of the People's Republic of China (2016YFA0500203), the National Science Foundation of China (31770900, 31730054, 31270884), the Beijing Natural Science Foundation (5122026, 5092017), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (2011087).
More Information
  • Corresponding author: Eli Song,songali@ibp.ac.cn;Tao Xu,xutao@ibp.ac.cn
  • Received Date: 12 May 2017
  • Rev Recd Date: 23 May 2017
  • Publish Date: 28 February 2018
  • Feeding behavior is the most fundamental behavior in C. elegans. Our previous results have dissected the central integration circuit for the regulation of feeding, which integrates opposing sensory inputs and regulates feeding behavior in a nonlinear manner. However, the peripheral integration that acts downstream of the central integration circuit to modulate feeding remains largely unknown. Here, we find that a Gai/o-coupled tyramine receptor, TYRA-2, is involved in peripheral feeding suppression. TYRA-2 suppresses feeding behavior via the AIM interneurons, which receive tyramine/octopamine signals from RIM/RIC neurons in the central integration circuit. Our results reveal previously unidentified roles for the receptor TYRA-2 and the AIM interneurons in feeding regulation, providing a further understanding of how biogenic amines tyramine and octopamine regulate feeding behavior.
  • loading
  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247-260
    Altun-Gultekin Z, Andachi Y, Tsalik EL, Pilgrim D, Kohara Y, Hobert O (2001) A regulatory cascade of three homeobox genes, ceh-10, ttx-3 and ceh-23, controls cell fate specification of a defined interneuron class in C. elegans. Development (Cambridge, England) 128:1951-1969
    Aurelio O, Hall DH, Hobert O (2002) Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295:686-690
    Avery L, Horvitz HR (1990) Effects of starvation and neuroactive drugs on feeding in Caenorhabditis elegans. J Exp Zool 253(3):263-270
    Bany IA, Dong MQ, Koelle MR (2003) Genetic and cellular basis for acetylcholine inhibition of Caenorhabditis elegans egg-laying behavior. J Neurosci 23:8060-8069
    Bargmann CI (2006) Chemosensation in C. elegans. In:WormBook:the online review of C elegans biology. pp 1-29
    Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515-527
    Barrios A, Ghosh R, Fang C, Emmons SW, Barr MM (2012) PDF-1 neuropeptide signaling modulates a neural circuit for matesearching behavior in C. elegans. Nat Neurosci 15:1675-1682
    Bergamasco C, Bazzicalupo P (2006) Chemical sensitivity in Caenorhabditis elegans. Cellular and molecular life sciences:CMLS 63:1510-1522
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94
    Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC (2004) Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc Natl Acad Sci USA 101:15512-15517
    Chen JJ, Wilkinson JR (2012) The monoamine oxidase type B inhibitor rasagiline in the treatment of Parkinson disease:is tyramine a challenge? J Clin Pharmacol 52:620-628
    Chow BY, Han X, Boyden ES (2012) Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res 196:49-61
    Greer ER, Perez CL, Van Gilst MR, Lee BH, Ashrafi K (2008) Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 8:118-131
    Jones D, Candido EP (1999) Feeding is inhibited by sublethal concentrations of toxicants and by heat stress in the nematode Caenorhabditis elegans:relationship to the cellular stress response. J Exp Zool 284(2):147-157
    Keane J, Avery L (2003) Mechanosensory inputs influence Caenorhabditis elegans pharyngeal activity via ivermectin sensitivity genes. Genetics 164(1):153-162
    Li C, Kim K (2008) Neuropeptides. In:WormBook:the online review of C elegans biology. pp 1-36
    Li Z, Li Y, Yi Y, Huang W, Yang S, Niu W, Zhang L, Xu Z, Qu A, Wu Z, Xu T (2012) Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation. Nat Commun 3:776
    Mendel JE, Korswagen HC, Liu KS, Hajdu-Cronin YM, Simon MI, Plasterk RH, Sternberg PW (1995) Participation of the protein Go in multiple aspects of behavior in C. elegans.Science 267:1652-1655
    Nelson LS, Rosoff ML, Li C (1998) Disruption of a neuropeptide gene, flp-1, causes multiple behavioral defects in Caenorhabditis elegans. Science 281:1686-1690
    Rex E, Komuniecki RW (2002) Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem 82:1352-1359
    Rex E, Hapiak V, Hobson R, Smith K, Xiao H, Komuniecki R (2005) TYRA-2 (F01E11.5):a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons.J Neurochem 94:181-191
    Ringstad N, Abe N, Horvitz HR (2009) Ligand-gated chloride channels are receptors for biogenic amines in C. elegans.Science 325:96-100
    Rogers CM, Franks Cj, Walker Rj, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49(3):235-244
    Rumore MM, Roth M, Orfanos A (2010) Dietary tyramine restriction for hospitalized patients on linezolid:an update.Nutr Clin Prac 25:265-269
    Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26(3):619-631
    Segalat L, Elkes DA, Kaplan JM (1995) Modulation of serotonincontrolled behaviors by Go in Caenorhabditis elegans. Science 267:1648-1651
    Serrano-Saiz E, Poole RJ, Felton T, Zhang F, De La Cruz ED, Hobert O (2013) Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155:659-673
    Sze JY, Victor M, Loer C, Shi Y, Ruvkun G (2000) Food and metabolic signalling defects in a Caenorhabditis elegans serotonin-synthesis mutant. Nature 403(6769):560-564
    Vidal-Gadea A, Topper S, Young L, Crisp A, Kressin L, Elbel E, Maples T, Brauner M, Erbguth K, Axelrod A, Gottschalk A, Siegel D, Pierce-Shimomura JT (2011) Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc Nat Acad Sci USA 108:17504-17509
    White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc B 314:1-340
    Xu K, Lee F, Gao SJ, Chung JE, Yano H, Kurisawa M (2013)Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-alpha2a for liver cancer therapy. J Controll Release 166:203-210
    Yoshida K, Hirotsu T, Tagawa T, Oda S, Wakabayashi T, Iino Y, Ishihara T (2012) Odour concentration-dependent olfactory preference change in C. elegans. Nat commun 3:739
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (110) PDF downloads(140) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return