Xianjin Xu, Marshal Huang, Xiaoqin Zou. Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics Reports, 2018, 4(1): 1-16. doi: 10.1007/s41048-017-0045-8
Citation: Xianjin Xu, Marshal Huang, Xiaoqin Zou. Docking-based inverse virtual screening: methods, applications, and challenges. Biophysics Reports, 2018, 4(1): 1-16. doi: 10.1007/s41048-017-0045-8

Docking-based inverse virtual screening: methods, applications, and challenges

doi: 10.1007/s41048-017-0045-8
Funds:  This work was supported by the NSF CAREER Award (DBI-0953839), NIH (R01GM109980), and American Heart Association (Midwest Affiliate) (13GRNT16990076) to XZ. MH is supported by NIH T32LM012410 (PI:Chi-Ren Shyu).
More Information
  • Corresponding author: Xiaoqin Zou,zoux@missouri.edu
  • Received Date: 27 July 2017
  • Rev Recd Date: 08 September 2017
  • Publish Date: 28 February 2018
  • Identifying potential protein targets for a small-compound ligand query is crucial to the process of drug development. However, there are tens of thousands of proteins in human alone, and it is almost impossible to scan all the existing proteins for a query ligand using current experimental methods. Recently, a computational technology called docking-based inverse virtual screening (IVS) has attracted much attention. In docking-based IVS, a panel of proteins is screened by a molecular docking program to identify potential targets for a query ligand. Ever since the first paper describing a docking-based IVS program was published about a decade ago, the approach has been gradually improved and utilized for a variety of purposes in the field of drug discovery. In this article, the methods employed in dockingbased IVS are reviewed in detail, including target databases, docking engines, and scoring function methodologies. Several web servers developed for non-expert users are also reviewed. Then, a number of applications are presented according to different research purposes, such as target identification, side effects/toxicity, drug repositioning, drug-target network development, and receptor design. The review concludes by discussing the challenges that docking-based IVS needs to overcome to become a robust tool for pharmaceutical engineering.
  • loading
  • Abagyan R, Totrov M, Kuznetsov D (1994) ICM-A new method for protein modeling and design:applications to docking and structure prediction from the distorted native conformation.J Comput Chem 15:488-506
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402
    Ashburn TT, Thor KB (2004) Drug repositioning:identifying and developing new uses for existing drugs. Nat Rev Drug Discov 3:673-683. https://doi.org/10.1038/nrd1468
    Azzaoui K, Hamon J, Faller B, Whitebread S, Jacoby E, Bender A, Jenkins JL, Urban L (2007) Modeling promiscuity based on in vitro safety pharmacology profiling data. ChemMedChem 2:874-880. https://doi.org/10.1002/cmdc.200700036
    Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems:application to microtubules and the ribosome. Proc Natl Acad Sci USA 98:10037-10041.https://doi.org/10.1073/pnas.181342398
    Bender A, Glen RC (2004) Molecular similarity:a key technique in molecular informatics. Org Biomol Chem 2:3204-3218.https://doi.org/10.1039/B409813G
    Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank.Nucleic Acids Res 28:235-242
    Bohm HJ (1992) The computer program LUDI:a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61-78
    Bohm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243-256
    Bohm HJ (1998) Prediction of binding constants of protein ligands:a fast method for the prioritization of hits obtained from de novo design or 3D database search programs.J Comput Aided Mol Des 12:309-323
    Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335-373.https://doi.org/10.1146/annurev.biophys.32.110601.142532
    Bullock C, Cornia N, Jacob R, Remm A, Peavey T, Weekes K, Mallory C, Oxford JT, McDougal OM, Andersen TL (2013) DockoMatic 2.0:high throughput inverse virtual screening and homology modeling. J Chem Inf Model 53:2161-2170. https://doi.org/10.1021/ci400047w
    Calvaresi M, Zerbetto F (2010) Baiting proteins with C60. ACS Nano 4:2283-2299. https://doi.org/10.1021/nn901809b
    Chang DT, Oyang YJ, Lin JH (2005) MEDock:a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33:W233-W238
    Chen SJ, Ren JL (2014) Identification of a potential anticancer target of danshensu by inverse docking. Asian Pac J Cancer Prev 15:111-116
    Chen YZ, Ung CY (2001) Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand-protein inverse docking approach. J Mol Graph Model 20:199-218
    Chen YZ, Zhi DG (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217-226
    Chen X, Ji ZL, Chen YZ (2002) TTD:therapeutic target database.Nucleic Acids Res 30:412-415
    Cho AE, Guallar V, Berne BJ, Friesner R (2005) Importance of accurate charges in molecular docking:quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26:915-931
    DesJarlais RL, Sheridan RP, Dixon JS, Kuntz ID, Venkataraghavan R (1986) Docking flexible ligands to macromolecular receptors by molecular shape. J Med Chem 29:2149-2153
    Do QT, Bernard P (2004) Pharmacognosy and reverse pharmacognosy:a new concept for accelerating natural drug discovery. IDrugs 7:1017-1027
    Do QT, Renimel I, Andre P, Lugnier C, Muller CD, Bernard P (2005)Reverse pharmacognosy:application of selnergy, a new tool for lead discovery. The example of epsilon-viniferin. Curr Drug Discov Technol 2:161-167
    Do QT, Lamy C, Renimel I, Sauvan N, André P, Himbert F, MorinAllory L, Bernard P (2007) Reverse pharmacognosy:identifying biological properties for plants by means of their molecule constituents:application to meranzin. Planta Med 73:1235-1240. https://doi.org/10.1055/s-2007-990216
    Ewing TJ, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0:search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411-428
    Feng LX, Jing CJ, Tang KL, Tao L, Cao ZW, Wu WY, Guan SH, Jiang BH, Yang M, Liu X, Guo DA (2011) Clarifying the signal network of salvianolic acid B using proteomic assay and bioinformatic analysis. Proteomics 11:1473-1485. https://doi.org/10.1002/pmic.201000482
    Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide:a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739-1749. https://doi.org/10.1021/jm0306430
    Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD:a web-accessible protein database for drug target identification. BMC Bioinform 9:104. https://doi.org/10.1186/1471-2105-9-104
    Grant JA, Pickup BT, Nicholls A (2001) A smooth permittivity function for Poisson-Boltzmann solvation methods. J Comput Chem 22:608-640
    Grinter SZ, Zou X (2014a) A Bayesian statistical approach of improving knowledge-based scoring functions for protein-ligand interactions. J Comput Chem 35:932-943
    Grinter SZ, Zou X (2014b) Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules 19:10150-10176. https://doi.org/10.3390/molecules190710150
    Grinter SZ, Liang Y, Huang SY, Hyder SM, Zou X (2011) An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model 29:795-799. https://doi.org/10.1016/j.jmgm.2011.01.002
    Grinter SZ, Yan C, Huang SY, Jiang L, Zou X (2013) Automated large-scale file preparation, docking, and scoring:evaluation of ITScore and STScore using the 2012 Community StructureActivity Resource Benchmark. J Chem Inf Model 53:1905-1914
    Günther S, Kuhn M, Dunkel M, Campillos M, Senger C, Petsalaki E, Ahmed J, Urdiales EG, Gewiess A, Jensen LJ, Schneider R, Skoblo R, Russell RB, Bourne PE, Bork P, Preissner R (2008)SuperTarget and Matador:resources for exploring drug-target relationships. Nucleic Acids Res 36:D919-D922.https://doi.org/10.1093/nar/gkm862
    Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium.Chem Phys Lett 246:122-129
    Huang SY, Zou X (2006a) An iterative knowledge-based scoring function to predict protein-ligand interactions:I. Derivation of interaction potentials. J Comput Chem 27:1866-1875.https://doi.org/10.1002/jcc.20504
    Huang SY, Zou X (2006b) An iterative knowledge-based scoring function to predict protein-ligand interactions:Ⅱ. Validation of the scoring function. J Comput Chem 27:1876-1882.https://doi.org/10.1002/jcc.20505
    Huang SY, Zou X (2007a) Ensemble docking of multiple protein structures:considering protein structural variations in molecular docking. Proteins 66:399-421. https://doi.org/10.1002/prot.21214
    Huang SY, Zou X (2007b) Efficient molecular docking of NMR structures:application to HIV-1 protease. Protein Sci 16:43-51. https://doi.org/10.1110/ps.062501507
    Huang SY, Zou X (2010) Advances and challenges in protein-ligand docking. Int J Mol Sci 11:3016-3034. https://doi.org/10.3390/ijms11083016
    Huang SY, Grinter SZ, Zou X (2010) Scoring functions and their evaluation methods for protein-ligand docking:recent advances and future directions. Phys Chem Chem Phys 12:12899-12908. https://doi.org/10.1039/c0cp00151a
    Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145-1152. https://doi.org/10.1002/jcc.20634
    Ji ZL, Han LY, Yap CW, Sun LZ, Chen X, Chen YZ (2003) Drug Adverse Reaction Target Database (DART):proteins related to adverse drug reactions. Drug Saf 26:685-690
    Ji ZL, Wang Y, Yu L, Han LY, Zheng CJ, Chen YZ (2006) In silico search of putative adverse drug reaction related proteins as a potential tool for facilitating drug adverse effect prediction.Toxicol Lett 164:104-112. https://doi.org/10.1016/j.toxlet.2005.11.017
    Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery.Can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep 10:194-200. https://doi.org/10.1038/embor.2009.12
    Jiang F, Kim SH (1991) "Soft docking":matching of molecular surface cubes. J Mol Biol 219:79-102
    Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727-748. https://doi.org/10.1006/jmbi.1996.0897
    Kaufmann SH (2008) Paul Ehrlich:founder of chemotherapy. Nat Rev Drug Discov 7:373. https://doi.org/10.1038/nrd2582
    Kellenberger E, Muller P, Schalon C, Bret G, Foata N, Rognan D (2006) sc-PDB:an annotated database of druggable binding sites from the Protein Data Bank. J Chem Inf Model 46:717-727. https://doi.org/10.1021/ci050372x
    Klabunde T, Hessler G (2002) Drug design strategies for targeting G-protein-coupled receptors. ChemBioChem 3:928-944
    Knegtel RM, Kuntz ID, Oshiro CM (1997) Molecular docking to ensembles of protein structures. J Mol Biol 266:424-440.https://doi.org/10.1006/jmbi.1996.0776
    Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE Ⅲ (2000) Calculating structures and free energies of complex molecules:combining molecular mechanics and continuum models. Acc Chem Res 33:889-897
    Koutsoukas A, Simms B, Kirchmair J, Bond PJ, Whitmore AV, Zimmer S, Young MP, Jenkins JL, Glick M, Glen RC, Bender A (2011) From in silico target prediction to multi-target drug design:current databases, methods and applications. J Proteomics 74:2554-2574. https://doi.org/10.1016/j.jprot.2011.05.011
    Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, Rizzo RC, Case DA, James TL, Kuntz ID (2009) DOCK 6:combining techniques to model RNA-small molecule complexes. RNA 15:1219-1230. https://doi.org/10.1261/rna.1563609
    Lauro G, Romano A, Riccio R, Bifulco G (2011) Inverse virtual screening of antitumor targets:pilot study on a small database of natural bioactive compounds. J Nat Prod 74:1401-1407. https://doi.org/10.1021/np100935s
    Lauro G, Masullo M, Piacente S, Riccio R, Bifulco G (2012) Inverse virtual screening allows the discovery of the biological activity of natural compounds. Bioorg Med Chem 20:3596-3602. https://doi.org/10.1016/j.bmc.2012.03.072
    Leach AR (1994) Ligand docking to proteins with discrete sidechain flexibility. J Mol Biol 235:345-356
    Li H, Gao Z, Kang L, Zhang H, Yang K, Yu K, Luo X, Zhu W, Chen K, Shen J, Wang X, Jiang H (2006) TarFisDock:a web server for identifying drug targets with docking approach. Nucleic Acids Res 34:W219-W224. https://doi.org/10.1093/nar/gkl114
    Li YY, An J, Jones SJ (2011) A computational approach to finding novel targets for existing drugs. PLoS Comput Biol 7:e1002139. https://doi.org/10.1371/journal.pcbi.1002139
    Liu M, Wang S (1999) MCDOCK:a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13:435-451
    Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB:a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35:D198-D201. https://doi.org/10.1093/nar/gkl999
    Liu H, Qing S, Zhang J, Fu W (2010a) Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model 29:326-330. https://doi.org/10.1016/j.jmgm.2010.09.004
    Liu X, Ouyang S, Yu B, Liu Y, Huang K, Gong J, Zheng S, Li Z, Li H, Jiang H (2010b) PharmMapper server:a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 38:W609-W614.https://doi.org/10.1093/nar/gkq300
    Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI:a server for identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. Nucleic Acids Res 39:W492-W498.https://doi.org/10.1093/nar/gkr299
    Ma C, Kang H, Liu Q, Zhu R, Cao Z (2011) Insight into potential toxicity mechanisms of melamine:an in silico study. Toxicology 283:96-100. https://doi.org/10.1016/j.tox.2011.02.009
    Ma DL, Chan DS, Leung CH (2013) Drug repositioning by structure-based virtual screening. Chem Soc Rev 42:2130-2141. https://doi.org/10.1039/c2cs35357a
    Macchiarulo A, Nobeli I, Thornton JM (2004) Ligand selectivity and competition between enzymes in silico. Nat Biotechnol 22:1039-1045. https://doi.org/10.1038/nbt999
    Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation. J Comput Chem 13:505-524
    Mestres J, Gregori-Puigjane E, Valverde S, Sole RV (2008) Data completeness-the Achilles heel of drug-target networks.Nat Biotechnol 26:983-984. https://doi.org/10.1038/nbt0908-983
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639-1662
    Moustakas DT, Lang PT, Pegg S, Pettersen E, Kuntz ID, Brooijmans N, Rizzo RC (2006) Development and validation of a modular, extensible docking program:DOCK 5. J Comput Aided Mol Des 20:601-619. https://doi.org/10.1007/s10822-006-9060-4
    Muegge I (2006) PMF scoring revisited. J Med Chem 49:5895-5902.https://doi.org/10.1021/jm050038s
    Muegge I, Martin YC (1999) A general and fast scoring function for protein-ligand interactions:a simplified potential approach.J Med Chem 42:791-804. https://doi.org/10.1021/jm980536j
    Muller P, Lena G, Boilard E, Bezzine S, Lambeau G, Guichard G, Rognan D (2006) In silico-guided target identification of a scaffold-focused library:1,3,5-triazepan-2,6-diones as novel phospholipase A2 inhibitors. J Med Chem 49:6768-6778.https://doi.org/10.1021/jm0606589
    Nwaka S, Hudson A (2006) Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5:941-955.https://doi.org/10.1038/nrd2144
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993-996. https://doi.org/10.1038/nrd2199
    Qiu D, Shenkin PS, Hollinger FP, Still WC (1997) The GB/SA continuum model for solvation. a fast analytical method for the calculation of approximate born radii. J Phys Chem A 101:3005-3014
    Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm.J Mol Biol 261:470-489. https://doi.org/10.1006/jmbi.1996.0477
    Rocchia W, Sridharan S, Nicholls A, Alexov E, Chiabrera A, Honig B (2002) Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies:applications to the molecular systems and geometric objects. J Comput Chem 23:128-137. https://doi.org/10.1002/jcc.1161
    Rockey WM, Elcock AH (2002) Progress toward virtual screening for drug side effects. Proteins 48:664-671. https://doi.org/10.1002/prot.10186
    Rognan D (2010) Structure-based approaches to target fishing and ligand profiling. Mol Inform 29:176-187
    Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779-815.https://doi.org/10.1006/jmbi.1993.1626
    Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH (2012) Virtual target screening:validation using kinase inhibitors. J Chem Inf Model 52:2192-2203. https://doi.org/10.1021/ci300073m
    Schomburg KT, Rarey M (2014) Benchmark data sets for structure-based computational target prediction. J Chem Inf Model 54:2261-2274. https://doi.org/10.1021/ci500131x
    Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects.J Med Chem 49:534-553
    Slon-Usakiewicz JJ, Pasternak A, Reid N, Toledo-Sherman LM (2004) New targets for an old drug:Ⅱ. Hypoxanthine-guanine amidophosphoribosyltransferase as a new pharmacodynamic target of methotrexate. Clin Proteom 1:227-234
    Sousa SF, Fernandes PA, Ramos MJ (2006) Protein-ligand docking:current status and future challenges. Proteins 65:15-26.https://doi.org/10.1002/prot.21082
    Sousa SF, Ribeiro AJ, Coimbra JT, Neves RP, Martins SA, Moorthy NS, Fernandes PA, Ramos MJ (2013) Protein-ligand docking in the new millennium-a retrospective of 10 years in the field. Curr Med Chem 20:2296-2314
    Srinivasan J, Cheatham TE, Cieplak P, Kollman PA, Case DA (1998)Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices. J Am Chem Soc 120:9401-9409
    Steffen A, Thiele C, Tietze S, Strassnig C, Kämper A, Lengauer T, Wenz G, Apostolakis J (2007) Improved cyclodextrin-based receptors for camptothecin by inverse virtual screening.Chem Eur J 13:6801-6809. https://doi.org/10.1002/chem.200700661
    Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127-6129
    Thomas PD, Dill KA (1996) An iterative method for extracting energy-like quantities from protein structures. Proc Natl Acad Sci USA 93:11628-11633
    Tietze S, Apostolakis J (2007) GlamDock:development and validation of a new docking tool on several thousand protein-ligand complexes. J Chem Inf Model 47:1657-1672.https://doi.org/10.1021/ci7001236
    Toledo-Sherman LM, Desouza L, Hosfield CM, Liao L, Boutillier K, Taylor P, Climie S, McBroom-Cerajewski L, Moran MF (2004)New targets for an old drug:a chemical proteomics approach to unraveling the molecular mechanism of action of methotrexate. Clin Proteom 1:45-67
    Trott O, Olson AJ (2010) AutoDock Vina:improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455-461. https://doi.org/10.1002/jcc.21334
    VenkatakrishnanAJ, DeupiX, Lebon G,Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors.Nature 494:185-194. https://doi.org/10.1038/nature11896
    Wang W, Donini O, Reyes CM, Kollman PA (2001) Biomolecular simulations:recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct 30:211-243
    Wang R, Lai L, Wang S (2002) Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des 16:11-26
    Wang JC, Lin JH, Chen CM, Perryman AL, Olson AJ (2011) Robust scoring functions for protein-ligand interactions with quantum chemical charge models. J Chem Inf Model 51:2528-2537. https://doi.org/10.1021/ci200220v
    Wang JC, Chu PY, Chen CM, Lin JH (2012a) idTarget:a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40:W393-W399.https://doi.org/10.1093/nar/gks496
    Wang W, Zhou X, He W, Fan Y, Chen Y, Chen X (2012b) The interprotein scoring noises in glide docking scores. Proteins 80:169-183. https://doi.org/10.1002/prot.23173
    Willett P, Barnard JM, Downs GM (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983-996
    Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P, Chang Z, Woolsey J (2006) DrugBank:a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34:D668-D672. https://doi.org/10.1093/nar/gkj067
    Xie L, Xie L, Bourne PE (2011) Structure-based systems biology for analyzing off-target binding. Curr Opin Struct Biol 21:189-199. https://doi.org/10.1016/j.sbi.2011.01.004
    Xu M, Lill MA (2013) Induced fit docking, and the use of QM/MM methods in docking. Drug Discov Today Technol 10:e411-e418
    Xu X-J, Su J-G, Liu B, Li C-H, Tan J-J, Zhang X-Y, Chen W-Z, Wang C-X (2013) Reverse virtual screening on persistent organic pollutants 4,40-DDE and CB-153. Acta Phys Chim Sin 29:2276-2285
    Xu X, Ma Z, Sun H, Zou X (2016) SM-TF:a structural database of small molecule-transcription factor complexes. J Comput Chem 37:1559-1564. https://doi.org/10.1002/jcc.24370
    Yan C, Zou X (2016) An ensemble docking suite for molecular docking, scoring and in silico screening. In:Zhang W (ed)Methods in pharmacology and toxicology. Springer, New York, pp 153-166
    Yan C, Grinter SZ, Merideth BR, Ma Z, Zou X (2016) Iterative knowledge-based scoring functions derived from rigid and flexible decoy structures:evaluation with the 2013 and 2014 CSAR benchmarks. J Chem Inf Model 56:1013-1021
    Yang CY, Wang R, Wang S (2006) M-score:a knowledge-based potential scoring function accounting for protein atom mobility. J Med Chem 49:5903-5911. https://doi.org/10.1021/jm050043w
    Yang L, Luo H, Chen J, Xing Q, He L (2009) SePreSA:a server for the prediction of populations susceptible to serious adverse drug reactions implementing the methodology of a chemical-protein interactome. Nucleic Acids Res 37:W406-W412.https://doi.org/10.1093/nar/gkp312
    Yang L, Wang K, Chen J, Jegga AG, Luo H, Shi L, Wan C, Guo X, Qin S, He G, Feng G, He L (2011) Exploring off-targets and offsystems for adverse drug reactions via chemical-protein interactome-clozapine-induced agranulocytosis as a case study. PLoS Comput Biol 7:e1002016. https://doi.org/10.1371/journal.pcbi.1002016
    Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY, Xu F, Chen Z, Zhu F, Chen Y (2016) Therapeutic target database update 2016:enriched resource for bench to clinical drug target and targeted pathway information. Nucleic Acids Res 44:D1069-D1074.https://doi.org/10.1093/nar/gkv1230
    Yue QX, Cao ZW, Guan SH, Liu XH, Tao L, Wu WY, Li YX, Yang PY, Liu X, Guo DA (2008) Proteomics characterization of the cytotoxicity mechanism of ganoderic acid D and computerautomated estimation of the possible drug target network.Mol Cell Proteom 7:949-961. https://doi.org/10.1074/mcp.M700259-MCP200
    Zahler S, Tietze S, Totzke F, Kubbutat M, Meijer L, Vollmar AM, Apostolakis J (2007) Inverse in silico screening for identification of kinase inhibitor targets. Chem Biol 14:1207-1214.https://doi.org/10.1016/j.chembiol.2007.10.010
    Zhao J, Yang P, Li F, Tao L, Ding H, Rui Y, Cao Z, Zhang W (2012)Therapeutic effects of astragaloside IV on myocardial injuries:multi-target identification and network analysis. PLoS One 7:e44938. https://doi.org/10.1371/journal.pone.0044938
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1830) PDF downloads(187) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return