Yu Chen, Zihao Wang, Jingrong Zhang, Lun Li, Xiaohua Wan, Fei Sun, Fa Zhang. Accelerating electron tomography reconstruction algorithm ICON with GPU. Biophysics Reports, 2017, 3(1-3): 36-42. doi: 10.1007/s41048-017-0041-z
Citation: Yu Chen, Zihao Wang, Jingrong Zhang, Lun Li, Xiaohua Wan, Fei Sun, Fa Zhang. Accelerating electron tomography reconstruction algorithm ICON with GPU. Biophysics Reports, 2017, 3(1-3): 36-42. doi: 10.1007/s41048-017-0041-z

Accelerating electron tomography reconstruction algorithm ICON with GPU

doi: 10.1007/s41048-017-0041-z
Funds:  This work was supported by the National Natural Science Foundation of China (U1611263,U1611261,61232001,61472397,61502455,61672493),Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase),the Strategic Priority Research Program of Chinese Academy of Sciences (XDB08030202),and the "973" Program of Ministry of Science and Technology of China (2014CB910700).
More Information
  • Corresponding author: Fei Sun,feisun@ibp.ac.cn;Fa Zhang,zhangfa@ict.ac.cn
  • Received Date: 09 February 2017
  • Rev Recd Date: 07 April 2017
  • Publish Date: 31 March 2017
  • Electron tomography (ET) plays an important role in studying in situ cell ultrastructure in threedimensional space. Due to limited tilt angles, ET reconstruction always suffers from the "missing wedge" problem. With a validation procedure, iterative compressed-sensing optimized NUFFT reconstruction (ICON) demonstrates its power in the restoration of validated missing information for low SNR biological ET dataset. However, the huge computational demand has become a major problem for the application of ICON. In this work, we analyzed the framework of ICON and classified the operations of major steps of ICON reconstruction into three types. Accordingly, we designed parallel strategies and implemented them on graphics processing units (GPU) to generate a parallel program ICON-GPU. With high accuracy, ICON-GPU has a great acceleration compared to its CPU version, up to 83.7×, greatly relieving ICON's dependence on computing resource.
  • loading
  • Batenburg K, Sijbers J (2011) Dart:a practical reconstruction algorithm for discrete tomography. IEEE Trans Image Process 20(9):2542
    Carazo JM, Carrascosa JL (1987) Restoration of direct Fourier threedimensional reconstructions of crystalline specimens by the method of convex projections. J Microsc 145(Pt 2):159-177
    Castañ o-Díez D, Kudryashev M, Arheit M, Stahlberg H (2012) Dynamo:a flexible, user-friendly development tool for subtomogram averaging of cryo-em data in high-performance computing environments. J Struct Biol 178(2):139
    Chen Y, Fö rster F (2014) Iterative reconstruction of cryo-electron tomograms using nonuniform fast Fourier transforms. J Struct Biol 185(3):309-316
    Chen Y, Zhang Y, Zhang K, Deng Y, Wang S, Zhang F, Sun F (2016) Firt:filtered iterative reconstruction technique with information restoration. J Struct Biol 195(1):49-61
    Deng Y, Chen Y, Zhang Y, Wang S, Zhang F, Sun F (2016) Icon:3d reconstruction with ‘missing-information’ restoration in biological electron tomography. J Struct Biol 195(1):100
    Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289-1306
    Fernández JJ (2008) High performance computing in structural determination by electron cryomicroscopy. J Struct Biol 164(1):1-6
    Fernández JJ, Carazo JM, García I (2004) Three-dimensional reconstruction of cellular structures by electron microscope tomography and parallel computing. J Parallel Distrib Comput 64(2):285-300
    Fridman K, Mader A, Zwerger M, Elia N, Medalia O (2012) Advances in tomography:probing the molecular architecture of cells. Nat Rev Mol Cell Biol 13(13):736-742
    Gilbert P (1972) Iterative methods for the three-dimensional reconstruction of an object from projections. J Theor Biol 36(1):105-117
    Goldstein AA (1965) On steepest descent. J Soc Ind Appl Math 3(1):147-151
    Goris B, Broek WVD, Batenburg KJ, Mezerji HH, Bals S (2012) Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113(1):120-130
    Han R, Zhang F, Wan X, Fernández JJ, Sun F, Liu Z (2014) A markerfree automatic alignment method based on scale-invariant features. J Struct Biol 186(1):167-180
    Keiner J, Kunis S, Potts D (2010) Using NFFT 3-a software library for various nonequispaced fast Fourier transforms. ACM Trans Math Softw 36(4):1-30
    Leary R, Saghi Z, Holland PAMDJ (2013) Compressed sensing electron tomography:theory and applications. Ultramicroscopy 131(8):70-91
    Liao X, Xiao L, Yang C, Lu Y (2014) Milkyway-2 supercomputer:system and application. Front Comput Sci 8(3):345-356
    Lindholm E, Nickolls J, Oberman S, Montrym J (2008) NVIDIA tesla:a unified graphics and computing architecture. IEEE Micro 28(2):39-55
    Lu?i? V, Fö rster F, Baumeister W (2005) Structural studies by electron tomography:from cells to molecules. Annu Rev Biochem 74(1):833
    Lu?i? V, Rigort A, Baumeister W (2013) Cryo-electron tomography:the challenge of doing structural biology in situ. J Cell Biol 202(3):407-419
    Mersereau RM (1976) Direct Fourier transform techniques in 3-d image reconstruction. Comput Biol Med 6(4):247
    NVIDIA Corp (2007) CUDA CUFFT Library Radermacher M (1992) Weighted back-projection methods. In:Frank J (ed) Electron tomography. Springer, Berlin, pp 91-115
    Rigort A, Villa E, Bäuerlein FJB, Engel BD, Plitzko JM (2012) Chapter 14-integrative approaches for cellular cryo-electron tomography:correlative imaging and focused ion beam micromachining. Methods Cell Biol 111:259-281
    Saghi Z, Holland DJ, Leary R, Falqui A, Bertoni G, Sederman AJ, Gladden LF, Midgley PA (2011) Three-dimensional morphology of iron oxide nanoparticles with reactive concave surfaces. A compressed sensing-electron tomography (CSET) approach. Nano Lett 11(11):4666-4673
    Saghi Z, Divitini G, Winter B, Leary R, Spiecker E, Ducati C, Midgley PA (2015) Compressed sensing electron tomography of needleshaped biological specimens-potential for improved reconstruction fidelity with reduced dose. Ultramicroscopy 160:230-238
    Sezan MI, Stark H (1983) Image restoration by convex projections in the presence of noise. Appl Opt 22(18):2781
    Yahav T, Maimon T, Grossman E, Dahan I, Medalia O (2011) Cryoelectron tomography:gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 21(5):670-677
    Yang SC, Wang YL, Jiao GS, Qian HJ, Lu ZY (2015) Accelerating electrostatic interaction calculations with graphical processing units based on new developments of ewald method using nonuniform fast Fourier transform. J Comput Chem 37(3):378
    Yang SC, Qian HJ, Lu ZY (2016) A new theoretical derivation of NFFT and its implementation on GPU. Appl Comput Harmon Anal. doi: 10.1016/j.acha.2016.04.009
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (800) PDF downloads(298) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return