Qiang Zhou, Niyun Zhou, Hong-Wei Wang. Particle segmentation algorithm for flexible single particle reconstruction. Biophysics Reports, 2017, 3(1-3): 43-55. doi: 10.1007/s41048-017-0038-7
Citation: Qiang Zhou, Niyun Zhou, Hong-Wei Wang. Particle segmentation algorithm for flexible single particle reconstruction. Biophysics Reports, 2017, 3(1-3): 43-55. doi: 10.1007/s41048-017-0038-7

Particle segmentation algorithm for flexible single particle reconstruction

doi: 10.1007/s41048-017-0038-7
Funds:  This work was supported by Grant (2016YFA0501100 to H.W.) from the Ministry of Science and Technology of China and Grant (Z161100000116034 to H.W.) from the Beijing Municipal Science&Technology Commission.Q.Z.was supported by CLS Postdoctoral Fellowship Foundation.
More Information
  • Corresponding author: Qiang Zhou,zhouqiang00@tsinghua.org.cn;Hong-Wei Wang,hongweiwang@tsinghua.edu.cn
  • Received Date: 23 February 2017
  • Rev Recd Date: 15 March 2017
  • Publish Date: 31 March 2017
  • As single particle cryo-electron microscopy has evolved to a new era of atomic resolution, sample heterogeneity still imposes a major limit to the resolution of many macromolecular complexes, especially those with continuous conformational flexibility. Here, we describe a particle segmentation algorithm towards solving structures of molecules composed of several parts that are relatively flexible with each other. In this algorithm, the different parts of a target molecule are segmented from raw images according to their alignment information obtained from a preliminary 3D reconstruction and are subjected to single particle processing in an iterative manner. This algorithm was tested on both simulated and experimental data and showed improvement of 3D reconstruction resolution of each segmented part of the molecule than that of the entire molecule.
  • loading
  • Amunts A, Brown A, Bai XC, Llacer JL, Hussain T, Emsley P, Long F, Murshudov G, Scheres SH, Ramakrishnan V (2014) Structure of the yeast mitochondrial large ribosomal subunit. Science 343:1485-1489
    Anden J, Katsevich E, Singer A (2015) COVARIANCE ESTIMATION USING CONJUGATE GRADIENT FOR 3D CLASSIFICATION IN CRYO-EM. Proceedings. IEEE Int Symp Biomed Imaging 2015:200-204
    Bai XC, Fernandez IS, McMullan G, Scheres SH (2013) Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. Elife 2:e00461
    Bai XC, McMullan G, Scheres SH (2015a) How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 40:49-57
    Bai XC, Rajendra E, Yang G, Shi Y, Scheres SH (2015b) Sampling the conformational space of the catalytic subunit of human gamma-secretase. Elife 4:e11182
    Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne JL, Subramaniam S (2015) 2.2 A resolution cryo-EM structure of beta-galactosidase in complex with a cell-permeant inhibitor. Science 348:1147-1151
    Brink J, Ludtke SJ, Kong Y, Wakil SJ, Ma J, Chiu W (2004) Experimental verification of conformational variation of human fatty acid synthase as predicted by normal mode analysis. Structure 12:185-191
    Brown A, Amunts A, Bai XC, Sugimoto Y, Edwards PC, Murshudov G, Scheres SH, Ramakrishnan V (2014) Structure of the large ribosomal subunit from human mitochondria. Science 346:718-722
    Carazo JM, Sorzano CO, Oton J, Marabini R, Vargas J (2015) Threedimensional reconstruction methods in single particle analysis from transmission electron microscopy data. Arch Biochem Biophys 581:39-48
    Chang S, Sun D, Liang H, Wang J, Li J, Guo L, Wang X, Guan C, Boruah BM, Yuan L, Feng F, Yang M, Wang L, Wang Y, Wojdyla J, Li L, Wang M, Cheng G, Wang HW, Liu Y (2015) Cryo-EM structure of influenza virus RNA polymerase complex at 4.3 A resolution. Mol Cell 57:925-935
    Chen S, McMullan G, Faruqi AR, Murshudov GN, Short JM, Scheres SH, Henderson R (2013) High-resolution noise substitution to measure overfitting and validate resolution in 3D structure determination by single particle electron cryomicroscopy. Ultramicroscopy 135:24-35
    Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161:450-457
    Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161:438-449
    Dashti A, Schwander P, Langlois R, Fung R, Li W, Hosseinizadeh A, Liao HY, Pallesen J, Sharma G, Stupina VA, Simon AE, Dinman JD, Frank J, Ourmazd A (2014) Trajectories of the ribosome as a Brownian nanomachine. Proc Natl Acad Sci 111:17492-17497
    Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen MY, Pieper U, Sali A, (2006). Comparative protein structure modeling using Modeller. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis…[et al.] Chapter 5, Unit 5.6
    Frank J, Ourmazd A (2016) Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM. Methods 100:61-67
    Humphrey W, Dalke A, Schulten K (1996) VMD:visual molecular dynamics. J Mol Graph 14(33-38):27-38
    Ilca S, Kotecha A, Sun X, Poranen M, Stuart D, Huiskonen J (2015) Localized reconstruction of subunits from electron cryomicroscopy images of macromolecular complexes. Nat Commun. doi: 10.1038/ncomms9843
    Jin Q, Sorzano CO, de la Rosa-Trevin JM, Bilbao-Castro JR, NunezRamirez R, Llorca O, Tama F, Jonic S (2014) Iterative elastic 3D-to-2D alignment method using normal modes for studying structural dynamics of large macromolecular complexes. Structure 22:496-506
    Katsevich E, Katsevich A, Singer A (2015) Covariance matrix estimation for the cryo-EM heterogeneity problem. SIAM J Imaging Sci 8:126-185
    Kucukelbir A, Sigworth FJ, Tagare HD (2014) Quantifying the local resolution of cryo-EM density maps. Nat Methods 11:63-65
    Kuhlbrandt W (2014) Cryo-EM enters a new era. Elife 3:e03678
    Leschziner AE, Nogales E (2006) The orthogonal tilt reconstruction method:an approach to generating single-class volumes with no missing cone for ab initio reconstruction of asymmetric particles. J Struct Biol 153:284-299
    Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504:107-112
    Liao HY, Hashem Y, Frank J (2015) Efficient estimation of threedimensional covariance and its application in the analysis of heterogeneous samples in cryo-electron microscopy. Structure 23:1129-1137
    Liu H, Cheng L (2015) Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus. Science 349:1347-1350
    Ma J (2005) Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular complexes. Structure 13:373-380
    Ma J, Karplus M (1997) Ligand-induced conformational changes in ras p21:a normal mode and energy minimization analysis. J Mol Biol 274:114-131
    Mindell JA, Grigorieff N (2003) Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol 142:334-347
    Nogales E, Scheres SH (2015) Cryo-EM:a unique tool for the visualization of macromolecular complexity. Mol Cell 58:677-689
    Penczek PA, Frank J, Spahn CM (2006) A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J Struct Biol 154:184-194
    Penczek PA, Kimmel M, Spahn CM (2011) Identifying conformational states of macromolecules by eigen-analysis of resampled cryo-EM images. Structure 19:1582-1590
    Penczek PA, Fang J, Li X, Cheng Y, Loerke J, Spahn CM (2014) CTER-rapid estimation of CTF parameters with error assessment. Ultramicroscopy 140:9-19
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25:1605-1612
    Radermacher M, Wagenknecht T, Verschoor A, Frank J (1987)
    Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J Microsc 146:113-136
    Rosenthal PB, Henderson R (2003) Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J Mol Biol 333:721-745
    Scheres SH (2012a) A Bayesian view on cryo-EM structure determination. J Mol Biol 415:406-418
    Scheres SH (2012b) RELION:implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180:519-530
    Scheres SH, Chen S (2012) Prevention of overfitting in cryo-EM structure determination. Nat Methods 9:853-854
    Scheres SH, Gao H, Valle M, Herman GT, Eggermont PP, Frank J, Carazo JM (2007) Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nat Methods 4:27-29
    Shan H, Wang Z, Zhang F, Xiong Y, Yin CC, Sun F (2016) A localoptimization refinement algorithm in single particle analysis for macromolecular complex with multiple rigid modules. Protein Cell 7:46-62
    Tagare HD, Kucukelbir A, Sigworth FJ, Wang H, Rao M (2015) Directly reconstructing principal components of heterogeneous particles from cryo-EM images. J Struct Biol 191:245-262
    Tang G, Peng L, Baldwin PR, Mann DS, Jiang W, Rees I, Ludtke SJ (2007) EMAN2:an extensible image processing suite for electron microscopy. J Struct Biol 157:38-46
    van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187-194
    Wang HW, Nogales E (2005) An iterative Fourier-Bessel algorithm for reconstruction of helical structures with severe Bessel overlap. J Struct Biol 149:65-78
    Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy.
    Nature 461:292-295
    Yan C, Hang J, Wan R, Huang M, Wong CC, Shi Y (2015) Structure of a yeast spliceosome at 3.6-angstrom resolution. Science (New York, N.Y.) 349:1182-1191
    Zhang W, Kimmel M, Spahn CM, Penczek PA (2008) Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770-1776
    Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH (2015) In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Nature 527:531-534
    Zhao M, Wu S, Zhou Q, Vivona S, Cipriano D, Cheng Y, Brunger A (2015) Mechanistic insights into the recycling machine of the SNARE complex. Nature 518:61-67
    Zhou Q, Huang X, Sun S, Li XM, Wang HW, Sui SF (2015) Cryo-EM structure of SNAP-SNARE assembly in 20S particle. Cell Res 25:551-560
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (119) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return