Shengliu Wang, Shuoguo Li, Gang Ji, Xiaojun Huang, Fei Sun. Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophysics Reports, 2017, 3(1-3): 8-16. doi: 10.1007/s41048-017-0035-x
Citation: Shengliu Wang, Shuoguo Li, Gang Ji, Xiaojun Huang, Fei Sun. Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ. Biophysics Reports, 2017, 3(1-3): 8-16. doi: 10.1007/s41048-017-0035-x

Using integrated correlative cryo-light and electron microscopy to directly observe syntaphilin-immobilized neuronal mitochondria in situ

doi: 10.1007/s41048-017-0035-x
Funds:  This work was supported by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB08030202) and the National Basic Research Program ("973" Program) of the Ministry of Science and Technology of China (2014CB910700).
More Information
  • Corresponding author: Fei Sun,feisun@ibp.ac.cn
  • Received Date: 19 August 2016
  • Rev Recd Date: 28 December 2016
  • Publish Date: 31 March 2017
  • Correlative cryo-fluorescence and cryo-electron microscopy (cryo-CLEM) system has been fast becoming a powerful technique with the advantage to allow the fluorescent labeling and direct visualization of the close-to-physiologic ultrastructure in cells at the same time, offering unique insights into the ultrastructure with specific cellular function. There have been various engineered ways to achieve cryo-CLEM including the commercial FEI iCorr system that integrates fluorescence microscope into the column of transmission electron microscope. In this study, we applied the approach of the cryo-CLEMbased iCorr to image the syntaphilin-immobilized neuronal mitochondria in situ to test the performance of the FEI iCorr system and determine its correlation accuracy. Our study revealed the various morphologies of syntaphilin-immobilized neuronal mitochondria that interact with microtubules and suggested that the cryo-CLEM procedure by the FEI iCorr system is suitable with a half micron-meter correlation accuracy to study the cellular organelles that have a discrete distribution and large size, e.g. mitochondrion, Golgi complex, lysosome, etc.
  • loading
  • Abbe E (1873) Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung. Arch Mikr Anat 9:413-468
    Al-Amoudi A, Chang JJ, Leforestier A, McDowall A, Salamin LM, Norlen LP, Richter K, Blanc NS, Studer D, Dubochet J (2004) Cryo-electron microscopy of vitreous sections. The EMBO journal 23:3583-3588
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642-1645
    Boldogh IR, Pon LA (2007) Mitochondria on the move. Trends Cell Biol 17:502-510
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW, Schultz P (1988) Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21:129-228
    Goldstein LS, Yang Z (2000) Microtubule-based transport systems in neurons:the roles of kinesins and dyneins. Annu Rev Neurosci 23:39-71
    Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461-465
    Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82-87
    Hanein D, Volkmann N (2011) Correlative light-electron microscopy. Adv Protein Chem Struct Biol 82:91-99
    Heintzmann R, Cremer CG (1999) In:Laterally modulated excitation microscopy:improvement of resolution by using a diffraction grating, pp 185-196
    Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780-782
    Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258-4272
    Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411-5419
    Jiang M, Chen G (2006) High Ca2+-phosphate transfection efficiency in low-density neuronal cultures. Nat Protoc 1:695-700
    Jun S, Ke D, Debiec K, Zhao G, Meng X, Ambrose Z, Gibson GA, Watkins SC, Zhang P (2011) Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. Structure 19:1573-1581
    Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, Sheng ZH (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132:137-148
    Klar TA, Engel E, Hell SW (2001) Breaking Abbe's diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys Rev E 64:066613
    Kukulski W, Schorb M, Welsch S, Picco A, Kaksonen M, Briggs JA (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192:111-119
    Li D, Shao L, Chen BC, Zhang X, Zhang M, Moses B, DE Milkie, Beach JR, Hammer JA 3rd, Pasham M, Kirchhausen T, Baird MA, Davidson MW, Xu P, Betzig E (2015) Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349:aab3500
    Lucic V, Kossel AH, Yang T, Bonhoeffer T, Baumeister W, Sartori A (2007) Multiscale imaging of neurons grown in culture:from light microscopy to cryo-electron tomography. J Struct Biol 160:146-156
    Mironov AA, Beznoussenko GV (2009) Correlative microscopy:a potent tool for the study of rare or unique cellular and tissue events. J Microsc 235:308-321
    Misgeld T, Kerschensteiner M, Bareyre FM, Burgess RW, Lichtman JW (2007) Imaging axonal transport of mitochondria in vivo. Nat Methods 4:559-561
    Nangaku M, Sato-Yoshitake R, Okada Y, Noda Y, Takemura R, Yamazaki H, Hirokawa N (1994) KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79:1209-1220
    Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315-360
    Nogales E, Scheres SH (2015) Cryo-EM:a unique tool for the visualization of macromolecular complexity. Mol Cell 58:677-689
    Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881-7888
    Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM).Nat Methods 3:793-795
    Sartori A, Gatz R, Beck F, Rigort A, Baumeister W, Plitzko JM (2007) Correlative microscopy:bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160:135-145
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imageJ:25 years of image analysis. Nat Methods 9:671-675
    Schorb M, Gaechter L, Avinoam O, Sieckmann F, Clarke M, Bebeacua C, Bykov YS, Sonnen AF, Lihl R, Briggs JA (2016) New hardware and workflows for semi-automated correlative cryo-fluorescence and cryo-electron microscopy/tomography. J Struct Biol. doi: 10.1016/j.jsb.2016.06.020
    Schwartz CL, Sarbash VI, Ataullakhanov FI, Mcintosh JR, Nicastro D (2007) Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc-Oxford 227:98-109
    Wolff G, Hagen C, Grunewald K, Kaufmann R (2016) Towards correlative super-resolution fluorescence and electron cryomicroscopy. Biol cell. doi: 10.1111/boc.201600008
    Zhang P (2013) Correlative cryo-electron tomography and optical microscopy of cells. Curr Opin Struct Biol 23:763-770
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (829) PDF downloads(259) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return