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Abstract During the COVID-19 pandemic, the interplay between the processes of immunity and senescence is
drawing more and more intensive attention. SARS-CoV-2 infection induces senescence in lung cells,
failure to clear infected cells and increased presence of inflammatory factors could lead to a cytokine
storm and acute respiratory disease syndrome (ARDS), which together with aging and age-associated
disease lead to 70% of COVID-19-related deaths. Studies on how senescence initiates upon viral infec-
tion and how to restrict excessive accumulation of senescent cells to avoid harmful inflammation are
crucially important. Senescence can induce innate immune signaling, and innate immunity can engage
cell senescence. Here, we mainly review the innate immune pathways, such as cGAS-STING, TLRs, NF-
kB, and NLRP3 inflammasome, participating in the senescence process. In these pathways, IFN-I and in-

flammatory factors play key roles. At the end of the review, we propose the strategies by which we can

improve the immune function and reduce inflammation based on these findings.
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INTRODUCTION

Pathogen-associated molecular patterns (PAMPs) can
be recognized by the pattern recognition receptors
(PRRs) of the cell (Ablasser and Hur 2020; Aleynick et
al. 2019; Lukhele et al 2019), by which the innate
immune system represents the first defense line of the
organism. Undoubtedly, foreign or misplaced nucleic
acids are a critically important signal received by the
innate immune system (Akira et al. 2006). Once PAMPs
are sensed by PRRs, an efficient signal transduction
system is elicited, resulting in the induction of type I
interferons (IFN-I) and proinflammatory cytokines
(Zheng and Gao 2019). Although, there is little
correlation between the processes of immunity and
senescence. However, because of the COVID-19
pandemic, the interdisciplinary connection between
these fields is highly emphasized.
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During exposure to stressful insults and certain
physiological processes, cellular senescence occurs
with a stable loss of growth potential and phenotypic
alterations, especially the senescence-associated
secretory phenotype (SASP) accompanied by a
proinflammatory secretome (Calcinotto et al. 2019). In
the early stages of senescence, chromatin and mtDNA
fragments leaked to the cytosol to activate innate
immune responses (Erdal et al 2017; Fenech et al
2011). After that, the IFN-I and inflammatory cytokines
secreted by the host can engage in cell senescence in
the late stage (Frisch and MacFawn 2020). In a word,
innate immunity is affected by senescence and
coordinates with it at the same time. Herein, we
introduce the latest progress on innate immune
pathways  involved in  cellular
Subsequently, the association between immunity and
senescence is illustrated. Finally, we discuss the
potential therapeutic target based on innate immune
responses for aging and age-associated diseases.

senescence.
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CELL SENESCENCE

The senescence process is characterized by a generally
irreversible cell-cycle arrest and other phenotypic
alterations, like secretory features, macromolecular
damage, and altered metabolism (Gorgoulis et al
2019). Senescence exists at any life stage and is
essential in embryogenesis, tissue homeostasis, and
tumor suppression. Nevertheless, senescence may be
the key ingredient of aging and age-associated diseases.
Cellular senescence was first found in normal diploid
cells undergoing an irreversible growth arrest after a
fixed number of divisions by Hayflick and colleagues in
1961 (Hayflick and Moorhead 1961). After that, they
noticed that this phenomenon was not observed in cells
separated from malignant tumors, implying that
senescence may be related to tumor suppression
(Hayflick 1965).

Senescence is characterized by a permanent cell-
cycle halt that results from exposure to damaging
stimuli such as nutritional deprivation, genotoxic

chemicals, hypoxia and dysfunction in the
mitochondria, or abnormal proliferation such as
oncogene activation. The p53 proteins and

retinoblastoma (RB) family are important factors to
enter senescent cell-cycle arrest in mammalian cells
(Rodier and Campisi 2011). In senescent cells, ectopic
expression of activated BRAF or RAS and persistent
DNA damage upregulates the expression of CDK4/6
inhibitor p16INK4A and (CDKN2A) CDK2 inhibitor
p21WAF1/Cip1 (CDKN1A) respectively (Sieben et al
2018). Then RB family proteins activate persistently,
repressing E2F transactivation and, ultimately, cell-
cycle arrest, which can not be reversed by inhibiting
p53 or RB family proteins (Beausejour et al. 2003;
Sharpless and Sherr 2015). There are many reasons for
this irreversibility, such as the influence of cytokines
induced by senescent cells (Rodier and Campisi 2011),
the heterochromatinization of E2F target genes (Salama
et al. 2014), and the consistent generation of reactive
oxygen species (ROS) (Takahashi et al. 2006). Besides,
an additional protein, ARF, plays a crucial part in cell-
cycle regulation, which is an alternate reading frame
protein of p16 and can activate p53 as well (Sharpless
and Sherr 2015).

The secretion of senescent cells is another prominent
feature of senescence. Senescent cells typically produce
numerous molecules, collectively called the senescent-
associated secretory phenotype (SASP), including
angiogenic factors, matrix metalloproteinases (MMPs),
growth modulators, and various proinflammatory
chemokines and cytokines (Coppe et al. 2010; Kuilman
and Peeper 2009). Specifically, there are many
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signaling pathways participating in the production of
SASP, mainly through enhancer remodeling and
transcription factors activation, including mammalian
target of rapamycin (mTOR), p38MAPK (Freund et al
2011; Ito et al. 2017; Kuilman and Peeper 2009), NF-kB,
GATA4, and C/EBPB (Kang et al. 2015; Salama et al.
2014). Various signaling pathways contributing to SASP
activation result from the different senescence inducers.
Due to DNA damage, type I interferon response is
triggered by cytoplasmic chromatin fragments (CCFs),
and the inflammasome is activated by damage-
associated molecular patterns (DAMPs) instead (Acosta
et al. 2013; Davalos et al. 2013; Li and Chen 2018).
Depending on the pathophysiological context, the
senescence response can be useful or harmful. Early in
our embryonic development, the SASP can help the
morphogenesis of certain structures (Munoz-Espin et al.
2013) and initiate parturition (Menon et al. 2019).
Besides, when tissue damage occurs, senescent cells
can be found in the injured site transiently, where they
function in wound healing and regeneration tissue
repair, mainly by secretion of certain SASP factors
(Ritschka et al. 2017; Sarig et al. 2019). One more
critical function of SASP is in the process of immunity.
Senescent cells can secrete SASP factors through
autocrine and paracrine (Acosta et al. 2013; Coppe et al.
2010; Kuilman and Peeper 2009), which can activate
immune responses, leading to the clearance of
senescent cells (Krizhanovsky et al. 2008; Munoz-Espin
and Serrano 2014). Considering the flip side, there are
detrimental, pro-aging impacts of senescence because
of the SASP. As reported, broad statistics from
pharmacological interventions and transgenic rodent
models consistently associate senescent cells with a
high risk of various age-related pathologies, including
tumorigenesis, cardiovascular diseases, and
neurodegenerative disorders (Childs et al. 2017; Song
et al. 2020). Chronic inflammation, mainly due to the
SASP development, also termed "inflammaging" in vivo,
is a main trigger for these illnesses (Franceschi and
Campisi 2014). More and more senescent cells
accumulate in various organs and tissues with age
(Bussian et al. 2018; Childs et al. 2018), leading to
compromised functional ability and more susceptibility
to age-related disease.

cGAS-STING

Genomic instability is a major contributor to aging.
Persistent DNA damage is reported to lead to aging by
causing senescence, cell death, and tissue dysfunction.
DNA-sensor cyclic GMP-AMP synthase (cGAS) can bind
extrachromosomal DNA fragments leaked into the
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cytoplasm in senescent cells (Schmitz et al 2023),
which leads to its liquid-liquid phase separation (Liu et
al. 2023; Zheng and Gao 2023), conformational change,
and activation. The activated cGAS utilizes GMP and
AMP to produce the second messenger, cyclic GMP-
AMP (cGAMP). cGAMP then binds a stimulator of
interferon genes (STING) in the endoplasmic reticulum,
activating STING and translocating to the Golgi
apparatus (Motwani et al 2019). Followed by the
translocation of STING, IkB kinase (IKK) and TANK-
binding kinase 1 (TBK1) are recruited and
phosphorylate the NF-xB inhibitor IkBa and interferon
regulatory factor 3 (IRF3). Then, NF-kB stimulates
proinflammatory molecules due to phosphorylated
IkBa and IFN-I and relevant downstream genes
produced upon the transportation of active IRF3 to the
nucleus (Corrales et al. 2017; Ishikawa et al. 2009). The
following sections will explain the details about IFN I
and NF-kB. Other sensors for cytosolic double-stranded
DNA (dsDNA) include AIM2 and IFI16. They are
members of the PYHIN family and can be induced by
the interferon (IFN). AIM2 can assemble inflammasome
to secret IL-1p and IL-18, whereas IF116 induces IFN-f3
production upon binding dsDNA (Duan et al. 2011).

In cellular senescence, the abnormal accumulation of
DNA in the cytoplasm is caused by several scenarios.
One is cytosolic chromatin fragments (CCFs), due to the
nuclear Lamin B1 loss in senescent cells, a main cause
of genomic instability (Dou et al. 2015; Graziano et al.
2018). As reported, Lamin B1 over-expression can
suppress the SASP (Rodier et al 2009). In addition,
long-interspersed element-1 (LINE-1 or L1), a major
human retro-transposable element, is derepressed in
senescent cells through downregulation in RB and an
upregulation of the FOXA1 transcription factor, also
serves as a source of cytosolic DNA (De Cecco et al
2019). Its activation leads to cDNA accumulation,
because of its high reverse transcriptase activity.
Normally, LINE-1 elements are degraded by
cytoplasmic DNases TREX1 and DNase2, decreased in
senescent cells due to loss of E2F activity (Takahashi et
al. 2018). A recent study shows that various
retrotransposable elements, such as LINEs, ERV, IAP,
and SINE B1, increase significantly in the aged mouse
kidney and brain, where aging signals occur first
(Ghanam et al 2019). Furthermore, dysfunctional
mitochondria can release mtDNA fragments, which
leads to the activation of cGAS-STING signaling. Except
for the nucleus, the only organelle having a genome is
the mitochondria in the cell. There are many ways
mtDNA can be leaked into the cytosol. In senescent
cells, clearance of damaged mitochondria by mitophagy
is not in time (Chen et al. 2020). Besides, the TFAM
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protein localized to the mitochondria can associate
with mtDNA, forming nucleoid-like structures and
imposing restrictions on mtDNA (Bonekamp and
Larsson 2018; Ngo et al. 2014; Zierhut and Funabiki
2020). TFAM translocates to the cytosol during
mitochondrial stress, helping cGAS bind mtDNA (West
et al. 2015). The mtDNA in the cytosol increases by
three to four fold upon TFAM depletion. Moreover,
mtDNA can enter the cytoplasm through pore
formation by BCL-2 associated X protein (BAX)
(McArthur et al. 2018) and voltage-dependent anion
channel (VDAC) (Kim et al. 2019a). The accumulation of
extranuclear DNA species, including CCFs, cDNA, and
mtDNA in senescent cells, elicit cGAS-STING signaling
to promote full-spectrum SASP expression. CCFs, cDNA,
and mtDNA constitute the accumulation of extranuclear
DNA species in senescent cells, by which cGAS-STING
signaling initiates.

Emerging evidence suggests a connection between
the cGAS-STING pathway and premature aging diseases.
One of them is Hutchinson Guilford Progeria (HGPS),
and the cause of this disease is truncation of Lamin A
(progerin). Replicative stress induced by progerin can
lead to genomic instability, further activating the cGAS-
STING pathway to initiate IFN responses (Kreienkamp
et al. 2018). Meanwhile, the cGAS-STING pathway
participates in neurodegenerative disorders, such as
Ataxia-Telangiectasia (A-T), Huntington’s disease (HD),
and Parkinson’s disease (PD) (Paul et al 2021). It is
especially noteworthy that the YAP/TAZ-cGAS-STING
signaling conduit finds a link between mechanosensing
and innate immunity. YAP/TAZ activity and cellular
mechano-signaling are decreased upon physiological
aging, leading to unscheduled cGAS-STING activation
(Sladitschek-Martens et al. 2022). Significantly, several
effective drugs, such as aspirin and quinacrine, reduce
the cGAS-STING signaling transduction. Mechanically,
aspirin can directly bind and acetylate cGAS to keep
cGAS inactive (Dai et al 2019), while quinacrine
disrupts the conformation of dsDNA to influence the
cGAS activity indirectly (Lama et al. 2019). Research on
new inhibitors is being actively carried out.

TOLL-LIKE RECEPTORS (TLRs)

Toll-like receptors (TLRs) are the first described PRRs
in the innate immune system, which are crucial in
inflammatory responses (Fitzgerald and Kagan 2020;
Iwasaki and Medzhitov 2010). They were first
identified in Drosophila (Schneider et al. 1994) and
demonstrated to play important roles in innate
immunity by later studies (Gay and Keith 1991). Among
TLRs, TLR4 was first identified. After the discovery of
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TLR4, many PRRs and corresponding ligands were
disclosed (Wright 1999). There are 13 different TLRs
(TLRs 1-13) discovered in mammals until now (Kawai
and Akira 2010), and 10 of these (TLRs 1-10) function
in humans. Upon stimuli, TLRs recognize specific
DAMPs and PAMPs to initiate signaling transduction
(Anthoney et al 2018; Satoh and Akira 2016).
According to different adaptor proteins, there are two
TLR signaling pathways, namely MyD88-dependent and
MyD88-independent (Kawai and Akira 2007). Most
TLRs depend on the MyD88-dependent pathway (von
Bernuth et al. 2008). In this pathway, secretion of
various pro-inflammatory factors, such as IL-6, IL-1,
and TNF-q, are induced by MyD88 signaling, leading to
inflammation (Gay et al. 2014; Kawai and Akira 2011).
First, TLRs interact with the C-terminus of MyD88
through the intracellular Toll/interleukin-1 receptor
(TIR) domain, and IL-1R-related kinase 4 (IRAK4) is
recruited to the N terminus of MyD88 (De Nardo et al.
2018). Then, the central kinase domain of MyD88
undergoes autophosphorylation, which leads to the
activation of IRAK1 and IRAK2. After that, transforming
growth factor (TGF)-fB-activated kinase 1 (TAK1) and
two TAK-binding proteins (TAB1 and TAB4) form a
complex with ubiquitin ligase TNF receptor associated
factor 6 (TRAF6), by which IkB kinase (IKK) complex is
activated through phosphorylation. Phosphorylation of
IkB leads to its degradation through the ubiquitin-
proteasome pathway (Hacker et al. 2006; Verstak et al.
2009), which releases the transcription factor NF-kB.
The unleashing of NF-kB causes it to translocate from
the cytoplasm to the nucleus and initiates the
expression of inflammatory cytokines (Cohen and
Strickson 2017; Kawai et al. 2004). Furthermore, TLR3
and TLR4 mediate the MyD88-independent pathway.
TLR4 recruits and activates TIR-domain-containing
adaptor inducing interferon-y (TRIF) and TRIF-related
adaptor molecule (TRAM), leading to the activation of
IRF3 and NF-kB, eventually stimulating IFN-I
production. TLR3 activation also needs adaptor TRIF,
but the downstream signal molecules recruited are
TBK1 and IKKe (Arancibia et al. 2007; Okun et al
2009).

Numerous studies claim that TLRs are involved in
aging and aging-related disorders, such as
neurodegenerative diseases, cardiovascular diseases,
and disc  degeneration. The  progress of
neurodegeneration is caused by neuroinflammation. In
this respect, TLRs are important in CNS disorders,
especially TLR4 (Azam et al. 2019). The TLR4/NF-kB-
signaling pathway can lead to many kinds of
inflammatory cytokines, such as MMP-9 and COX-2,
which may be a cause of secondary brain injury (Hua et
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al. 2007; Kerfoot et al. 2004; Lucas et al. 2006; Wang et
al. 2000). In the clinic, loading nanoparticles with
quercetin can prevent AD progression as a result of
suppressing TLR4-involved pathway (Testa et al
2014). Meanwhile, quercetin nanoparticles also
downregulate inflammatory cytokine secretion by
inhibiting the expression of TLR2 and TLR4 (Bhaskar et
al. 2011). Based on these observations, TLR4 may be a
potential target to develop novel strategies for
neurodegenerative disorders. Many studies have shown
that different TLRs are involved in the process of
atherosclerosis through distinct mechanisms (Li et al
2020; Wolf and Ley 2019). TLR7 can inhibit
inflammation in atherosclerosis by secreting TNF-a and
IL-10, so it is regarded as a prognosis marker in severe
atherosclerosis patients (Karadimou et al 2017).
Besides, cell-free DNA (cf DNA) recognized by TLR9 can
lead to the development of vascular inflammation,
which induces the formation of initial atherosclerotic
plaques (Fukuda et al. 2019). TLR5 upregulates the
expression of proinflammatory factors by inducing the
activation of NADPH oxidase 4 (Nox4), which is crucial
for atherosclerotic intimal hyperplasia (Kim et al. 2016;
Kim et al. 2019b). TLRs are also closely associated with
disc degeneration and virus-induced aging. It is
reported that TLR2 can induce senescence in
intervertebral disc cells, and o-vanillin may be a
suitable drug for these patients (Mannarino et al
2021). Similarly, another study gives the novel
hyaluronic acid granular hydrogel as a new strategy for
osteoarthritis progression via suppressing TLR2-
mediated cellular senescence (Zhang et al. 2023).
Furthermore, TLR3 causes senescence in patients
infected with COVID-19 and tremendously increases
SASP production (Tripathi et al. 2021).

IFN-I

Interferons were first discovered in 1957 by Isaacs and
Lindenmann (Isaacs and Lindenmann 1957). They are
crucial molecules playing important roles in both
innate and adaptive immunity. Through various pattern
recognition receptors (PRRs), the process of innate
immunity initiates, and the type I IFN genes are induced
rapidly. These receptors recognize molecules from
pathogens known as pathogen-associated molecular
patterns (PAMPs), such as cytosolic DNA, double-
stranded RNA (dsRNA), flagellin, bacterial lipoproteins,
and bacterial lipopolysaccharides (Amarante-Mendes et
al. 2018). In addition to PAMPs, damage-associated
molecular patterns (DAMPs) presented by damaged
cells can also be perceived by certain PRRs (Roh and
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Sohn 2018). Many other non-classical IFN-I stimuli
were found recently, such as DNA damage, FAS/FASL
activation (Qadir et al. 2020), and endogenous cytosolic
chromatin fragments. These non-classical IFN-I stimuli
link innate immunity and senescence together (Deng et
al. 2014; Sistigu et al. 2014; Yu et al. 2015). Herein, we
briefly review the signaling mechanisms of IFN-I
induction induced by PRRs. First, endosomal Toll-like
receptor (TLR3), as well as cytosolic receptors retinoic
acid-inducible  gene-I (RIG-I) and melanoma
differentiation-associated protein 5 (MDAS), recognize
dsRNA. Cytosolic TLR9 and cGAS recognize DNA.
Primarily, pattern recognition receptors converge
signals upon IKK-family kinases, leading to the
phosphorylation and activation of two downstream
transcription factors, IRF3 and NF-«kB. Upon activation,
these factors directly induce the IFN-f gene and various
antiviral target genes expression, including ISG15
(Villarroya-Beltri et al. 2017) and many antiviral genes
containing MxA/B, IFIT- and IFITM-family genes
(Ashley et al. 2019). After that, secreted IFN-$ from
upstream pathways activates another receptor called
the IFNAR1/2 receptor. Then, Janus Kkinase
phosphorylates STAT1 and STATZ2, resulting in a
canonical complex of STAT1/STAT2/IRF9 (ISGF3)
formation. Certain genes, called interferon-stimulated
genes (ISGs) expressing, contain ISGF3 response
elements (ISRE), leading to a second wave of IFN-§
production (Ng et al. 2016). Meanwhile, autocrine [FN-I
causes cell-cycle arrest through p53 and Rb checkpoint
pathways (Braumuller et al. 2013; Sangfelt et al. 1999).
In addition, two ISGs can contribute to the cycle. While
IFI16 can repress c-myc, [FI202a/b gene products can
interfere with the transactivation of MYC and E2F
proteins (Song et al. 2010). Besides, in many cases,
apoptosis can serve as an efficient innate immune
mechanism resulting from poly-ubiquitinated IRF3,
named RLR-induced IRF-3-mediated apoptosis (RIPA)
(Chattopadhyay et al. 2016).

There has been plenty of evidence pointing out that
IFN-I plays a strong part in DNA damage signaling and
senescence (Frisch and MacFawn 2020). The up-
regulation of ISGs was first found in senescent
fibroblasts in 1995, which can be inhibited by IFN-f3-
neutralizing antibodies (Tahara et al. 1995). Then, in
2003, through oligonucleotide microarrays, Michael
Tainsky's laboratory found that among the genes
upregulated in senescent cells and down-regulated in
immortalized cells simultaneously, 46% were IFNs or
ISGs (Kulaeva et al. 2003). In the same year, Tadatsugu
Taniguchi's laboratory found that in response to DNA
damage, IFN-I increased the expression of p53 and
cooperated with stressful events to activate p53
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(Takaoka et al. 2003). IFN-I can engage in p53 signals,
and the important role p53 plays is initiating
senescence from growth arrest, but p53 is not
necessary for the secretion of SASP (Coppe et al. 2008),
which is exactly the stage where IFN-I comes into play.
Later reports showed that cell senescence could be
induced by prolonged IFN-f treatment in fibroblasts,
resulting in various DNA damage response (DDR)
features containing phosphorylation of y-H2AX foci
(indicative of unrepaired double-strand DNA breaks),
ATM, p53, CHK2, and increased ROS (Moiseeva et al
2006). The senescence was dependent on ATM and
ROS. Meanwhile, the laboratory of Serge Fuch (Yu et al.
2015) found that DSB induced by FokI nuclease fusion
proteins resulted in IFN-f production and the induction
of phospho-STAT1. Furthermore, this phenomenon
depended on ATM, IRF3, and IKKa/f activation. More
surprisingly, IRF3 was found to resident in chromatin
repair foci, which provided a molecular basis.

A clinical study observed that there was an increase
in DNA repair foci and high expression of IFN- in
fibroblasts isolated from Terc-deficient mice or
progeria patients (Yu et al 2015). Prominently,
neutralizing antibodies targeting IFN-3 can partially
combat the effects of senescence, whether in the
normal senescent and progeria fibroblasts. This
laboratory also demonstrated that knockout of the
IFNAR1 receptor partially survived the phenotypes
resulting from the shorter telomeres in stem cells, with
distorted intestinal crypt-and-villus structure. These
results suggested that IFN-I signaling participated in
stem cell senescence. In agreement with previous
studies, IFN-I also upregulates DDR because knockout
of IFNAR1 leads to decreased p53 activation and the
senescence markers, p21WAF/CIP, and p1l6INK4a.
Research suggests that Terc/" mice are more
susceptible to suffering a premature aging phenotype
after incubating for some generations. Prominently, the
IFNAR1 knockout relieved this phenotype and
increased life span significantly (Yu et al. 2015). In
conclusion, not only IFN-I contributes to DDR-induced
senescence, but also DDR contributes to IFN-I. Besides,
as membrane-bound IFNAR1 gradually decreases and
IFN-I signaling is inhibited with age, melanoma
progression commonly occurs (Araya and Goldszmid
2017; Fuchs 2013). It is conceivable that IFN-I and
IFNAR1 are likely potential targets for increasing the
health span of older adults.

NF-xB
Inflammaging is defined as a chronic, sterile, low-grade

inflammation (Franceschi et al. 2000), which does not
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simply increase with age but has a highly positive
correlation with a decline in health, age-related
diseases, and mortality risk (Arai et al 2015;
Bruunsgaard 2006; Krabbe et al. 2004). Inflammaging
results from a chronic gathering of senescent cells with
age, which produce large amounts of SASP, including
chemokines, proinflammatory cytokines,
metalloproteases, soluble receptors, growth factors,
and certain protease inhibitors (Coppe et al 2010;
Freund et al. 2010; Malaquin et al. 2016). The secretion
of SASP varies in certain signaling pathways from cell to
cell, but the central one is the same: the transcription
factor NF-xB (Chien et al 2011; Meyer et al. 2017;
Salminen et al 2012). It plays an important role in
regulating inflammation response in the immunity
process, and a later study discovered it to be crucial in
SASP generation.

There are a wide variety of inducers leading to the
activation of NF-xB, containing ionizing radiation,
bacterial lipopolysaccharides, reactive oxygen species
(ROS), abnormal DNA and RNA, and cytokines like
interleukin 1-beta (IL-1f), and tumor necrosis factor-
alpha (TNF-a) (Zhang et al. 2017). During the resting
state, NF-kB localizes in the cytoplasm, forming a
complex with inhibitors of NF-kB (IxBs), which
maintains the inactive stage of NF-kB. In response to
stimulation, IkB kinase (IKK) phosphorylates IkBs for
degradation, resulting in the transport of NF-kB to the

nucleus. After that, larger quantities of gene
transcription are initiated, which contributes to cell
proliferation, inflammation, and apoptosis

(Oeckinghaus and Ghosh 2009), which is termed the
"canonical pathway" of NF-xB because NF-kB essential
modulator (NEMO) participates in the process, which is
a part of the IKK complex (Hariharan et al 2021).
Except for cGAS-STING signals, the upstream canonical
pathway includes dsRNA-dependent protein kinase
(PKR) (Williams 1999) and myeloid differentiation
primary response 88 (MyD88) (D'Acquisto et al. 2002).
The PKR can also participate in the "noncanonical
pathway" of NF-kB activation by TNF-a. This pathway
can lead to a chronic and persistent inflammation
response, contrasting with the canonical one
(Dorrington and Fraser 2019). Besides, the serine-
threonine protein kinases MAPKs activate NF-xB in a
noncanonical way. During pathophysiological and
stress, MAPKs activated by P38 mitogen mediate the
production of IL-1 and TNF-a (Battagello et al. 2020).
To achieve full activation, The Janus Kinase (JAK)-
transcription factor (STAT) pathway needs to be
activated by IL-6, a remarkable marker in senescent
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cells. Upon IL-6 sensed, STAT3 is phosphorylated and
then translocated to the nucleus to decrease the
production of IFN-y and release inflammatory factors
(Brasier 2010). Apart from the signaling above, cGAS-
STING can also control innate immunity by transcribing
acute-phase serum amyloids (A-SAAs) and Toll-like
receptor 2 (TLR2) mediated by NF-kB in senescent
cells. In this pathway, TLR2 recognizes A-SAAs, leading
to the further activation of NF-kB with the secretion of
proinflammatory SASP molecules, which serves as a
positive feedback loop in senescence. As reported,
overexpression of TLR2 causes cell cycle arrest, leading
to SA-B-gal production, while TLR2 deficiency
decreases the expression of p16, p21, and SASP (Hari et
al. 2019).

Recently, studies have shown that NF-kB-mediated
inflammation directly affects DNA damage response
(Fang et al. 2014; Hinz et al. 2010; Kang et al. 2015).
When DNA damage occurs, ATM and RAD3-related
(ATR) and ataxia-telangiectasia mutated (ATM) are
recruited to the DNA lesion by single-stranded DNA
breaks and DSBs, respectively (d'Adda di Fagagna 2008).
During the resting state, the p62 protein can target
transcription factor GATA4 for degradation by
autophagy. Upon stimuli, p62 is restrained by ATM or
ATR, providing the basis for GATA4 to induce
inflammation mediated by NF-kB. In addition, via
translocation to cytoplasm, ATM can activate TRAF6 to
initiate NF-kB signals further. Prominently, ATM can
activate STING without cGAS, contributing to NF-«xB
activation (Dunphy et al. 2018). Additionally, activated
ATM can degrade IxBa, further leading to the
phosphorylation of RELA (p65), resulting in NF-xB
activation. ATM has a dramatic effect on the process. To
sum up, DNA damage has increasingly become a crucial
regulator of inflammation, binding inflammation and
aging together (Zhao et al. 2023).

The study on NF-kB pathways may provide new drug
targets for aging and aging-related illnesses. For this
problem, a well-studied antidiabetic drug, metformin, is
wildly used to relieve inflammaging. Metformin can
restrain NF-xB signaling and the production of
proinflammatory factors downstream (Moiseeva et al.
2013). Meanwhile, it can activate autophagy to clear up
senescent cells (Bharath et al. 2020). Recent studies
showed that metformin can promote autophagy,
improve mitochondria function in CD4 * T cells isolated
from old donors in vitro, and restrict the age-related
proinflammatory profile of Th17. Furthermore, many
reports focus on the roles of metformin in reducing
autoimmunity and supporting healthy immune function.
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Besides, there are new therapies targeting IL-6 to
suppress NF-kB pathways. Dexamethasone, a steroid
hormone, can retain NF-xB in the cytosol by increasing
IkB expression (Auphan et al 1995) and inhibit the
activity of NF-kB by interfering with IL-6 secretion
(Buhl et al. 2019; Ge et al. 2018; Laberge et al. 2012).
Tocilizumab and sarilumab, two antibodies targeting
the IL-6 receptor, have been utilized in clinics as an
ideal therapeutic method for severe patients (Wise
2020).

NLRP3

Acting as a signal complex, it is obvious that the
inflammasomes play an important role in various
inflammation-associated diseases. There are various
inflammasomes, such as NLRP1, NLRP3, NLRC4, IPAF,
and AIM2. Among them, the NLRP3 inflammasome
garners particular attention for its capacity to identify
numerous DAMPs and PAMPs and to resist the invasion
of exotic microbes. The NLRP3 inflammasome contains
three members: nucleotide-binding domain leucine-
rich repeat (NLR) and pyrin domain containing
receptor 3 (NLRP3), apoptosis-associated speck-like
protein containing a caspase recruitment domain
(ASC), and pro-caspase-1 (Yang et al 2019). NLRP3
monomers gather in oligomers, then recruit and bind
with ASC upon danger stimuli. Afterward, pro-caspase-
1 joins the signal complex via ASC (Yang et al. 2019;
Zahid et al 2019). The activation of NLRP3
inflammasome requires PAMPs and DAMPs. Derived
from immune cells stimulated by damaged tissues, they
are termed DAMPs, whereas sugar conjugates and
glycans compose PAMPs. There have been many
studies on PAMPs and DAMPs with the NLRP3
inflammasome recently. For instance, NLRP3
inflammasome can be activated by the cumulation of
uric acid (UA) (Martinon et al 2006) and the
expression of cathepsin B (CTSB) (Tang et al. 2018).
Furthermore, sensed by TLR4 localized on the cellular
plasma membrane, lipopolysaccharides (LPS) from
Gram-negative bacteria activate NF-kB to promote the
activation of the NLRP3 inflammasome, sending the
signals to caspase-1 (Yu et al 2017). After that,
caspase-1 cleaves pro-IL-18 and pro-IL-1f3 to generate
IL-18 and IL-1f, and then the inflammatory response
initiates to secrete plenty of proinflammatory factors
(Yang et al. 2019).

Mounting evidence shows that NLRP3 participates in
the process of many age-related symptoms. Regarding
aging-related fibrosis, the alveolar macrophages
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isolated from old mice with bleomycin (BLM)-induced
lung injury have a higher activation of NLRP3
inflammasome and secret more IL-18 and IL-1f,
compared to young mice (Stout-Delgado et al. 2016).
Notably, chronic aging-related diseases, like
nonalcoholic fatty liver disease, lead to metabolic
disorders, causing hyperactivation of NLRP3
inflammasomes and severe liver fibrosis (Liu et al
2022). Consequently, the NLRP3 inflammasome is one
of the main causes of fibrosis development. Not only
that, it also contributes to organ aging. In the ovary, the
expression of NLRP3 increases with age in WT mice,
which is not observed in the littermate control of
NLRP3 KO mice. Knockout of NLRP3 can ameliorate the
function of the ovary and increase pregnancy rates
obviously (Navarro-Pando et al. 2021).

Controlling the activation of inflammatory response
is crucial for delaying the natural aging process and
staying healthy. NLRP3 may be an appropriate target to
be inhibited, by which inflammation is suppressed
(Zahid et al. 2019). Recently, in macrophages from old
mice, deacetylation of NLRP3 via SIRT2 suppressed age-
related inflammation resulting from NLRP3 activation
(He et al. 2020). The expression of SIRT2 reduced with
age, and the NLRP3 inflammasome was activated by
mitochondrial dysfunction, destroying the regenerative
ability of HSCs (Luo et al. 2019). In addition, MCC950,
an inhibitor of NLRP3, can inhibit the mammalian
targets of rapamycin (mTOR) pathway in aging mice,

thereby increasing autophagy and reducing the
inflammation response, finally improving liver
dysfunction (Marin-Aguilar et al 2020). More

importantly, MCC950 can reduce liver, lung, and kidney
fibrosis in aging mice. Besides, MCC950 can increase
the fertilization ratio in female mice to the same level in
Nlrp3”/- mice (Navarro-Pando et al. 2021). MCC950 has
significant efficacy and specific features in age-related
inflammation in mice, but it still has a long way to go
for human clinical trials.

SUMMARY AND PERSPECTIVES

From the modern point of view, aging means symptoms
of degenerative changes, leading to many chronic
diseases, including neurological degeneration, fibrosis,
cardiovascular disease, diabetes, and cancer (Cai et al.
2022). In contrast, cellular senescence serves as the
main cause of aging. Upon stimuli, such as exposure to
genotoxic agents and oncogene activation, cells enter a
stage with irreversible growth arrest, accompanied by
secretory features, oxidative damage of
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biomacromolecules, and metabolic changes. The SASP
secreted by senescent cells recruits immune cells to
recognize and clear up damaged cells, finally
maintaining the balance of the immune system (Kohli et
al. 2021). However, immune system dysfunction causes
senescent cell accumulation, persistent tissue damage,
and, more severely, chronic low-grade inflammation,
termed inflammaging (Teissier et al. 2022). The key
strategy to suppress senescence is improving the
immune function and reducing the inflammation
response. In this review, we introduce the signaling
pathways involved in senescence. First, we briefly give
the basic conception of senescence, including the
initiation of senescence, the characteristics of different
stages, and the classic pathways contributing to
senescence. Second, we summarize the key innate
immune pathways participating in senescence,
including cGAS-STING pathways, TLRs pathways, [FN-I
and downstream pathways, NF-kB pathways, and
NLRP3 inflammasome pathways. In senescent cells, the
occurrence and regulation of these pathways, different
from normal responses, are elaborated in the following
paragraphs. Each part is not independent and is linked
to all the others. cGAS-STING pathways play important
parts in connecting cellular damage and inflammation,
the activation of which can lead to both IFN-I and
inflammatory factors. Similarly, TLRs-mediated signal
transduction pathways can both activate
proinflammatory cytokine responses and upregulate
IFN-I and ISGs expression, integrating innate immune
responses. While IFN-I and ISGs can amplify the
damage signals and trigger the clearance of senescent
cells. Meanwhile, it can work in concert with NF-xB
pathways also. Inflammatory factors secreted upon NF-
kB activation serve as triggers for the downstream of
IFN-I, like IL-6. Besides, NF-kB pathways can provide
the first signal of the NLRP3 activation. At the end of
each section, we discuss the potential strategies
targeting the key molecules, including cGAS, STING,
TLRs, IFN-], IL-6, and NLRP3. Some of the drugs above
have strong and stable effects in animal tests, but more
research is needed to conduct human trials.

In this review, we summarize the crucial innate
immune signaling pathways associated with cellular
senescence and elaborate on the relationship between
cellular senescence and innate immunity (Fig. 1).
Senescence, IFN-I, and inflammation all have one thing
in common: they are all double-edged swords with both
advantages and disadvantages. On one hand, aging
removes damaged cells, facilitates tissue recovery, and
inhibits carcinogenesis. On the other hand, it can also
cause premature aging and a series of aging-related

© The Author(s) 2023

diseases. IFN-I responses, on the one hand, can help the
body resist pathogen invasion and help the immune
clearance of target cells. On the other hand, it can also
cause autoimmune diseases. Likewise, inflammation
can secrete inflammatory factors to help the host kill
pathogenic microorganisms, leading to apoptosis and
cell death but disrupting immune homeostasis. At
present, the study of cellular senescence is in the
ascendant, and the relationship with immunity has
gradually received attention because of the COVID-19
pandemic. According to current research, immunity is
involved in cellular senescence, mainly in the later
stage, playing a regulatory role (Frisch and MacFawn
2020). Whether IFN-I and inflammatory signaling
pathways are involved in the early stages of aging
warrants further study. Many studies have only found
the link between immune molecules and senescence,
but the mechanism has yet to be addressed. For
example, cGAS-STING is involved in the process of aging
regulated by YAP/TAZ, but the specific mechanism has
not been discovered (Sladitschek-Martens et al. 2022).
In addition, it is not known whether the senescence
pathway is directly involved in immune regulation and
whether p21, p16, and DNA damage-related molecules
are directly involved. Overall, the crosstalk between
senescence and innate immune signaling pathways
remained to be explored.
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Fig. 1 The interaction between senescence and innate immune signaling pathways. A The mechanisms of cell senescence. During senes-
cence, p53-p21 and p16-Rb pathways are firstly activated by numerous stressors, leading to irreversible cell-cycle arrest. Then, a series
of changes, such as cytoplasmic DNA accumulation, mitochondrial disorders, and lysosomal damage, occur. Additionally, SA-f-gal activi-
ty, lipofuscin accumulation, and SASP production are induced and regarded as senescent markers. B cGAS-STING, TLRs, and NLRP3 in-
flammasome participate in the process of senescence and promote the SASP through the production of inflammatory factors, IFN-I, and
downstream ISGs, respectively. In addition, NF-kB can be stimulated by DNA damage, and IFN-I can regulate the P53 signaling pathway,
which is directly involved in the signaling pathway of senescence. The balance of inflammation and immunity is essential for the body to

achieve healthy aging
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