Volume 8 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
Hanyu Zhang, Weiwei Fan, Gilbert Nshogoza, Yaqian Liu, Jia Gao, Jihui Wu, Yunyu Shi, Xiaoming Tu, Jiahai Zhang, Ke Ruan. Driving force of biomolecular liquid–liquid phase separation probed by nuclear magnetic resonance spectroscopy[J]. Biophysics Reports, 2022, 8(2): 90-99. doi: 10.52601/bpr.2022.210034
Citation: Hanyu Zhang, Weiwei Fan, Gilbert Nshogoza, Yaqian Liu, Jia Gao, Jihui Wu, Yunyu Shi, Xiaoming Tu, Jiahai Zhang, Ke Ruan. Driving force of biomolecular liquid–liquid phase separation probed by nuclear magnetic resonance spectroscopy[J]. Biophysics Reports, 2022, 8(2): 90-99. doi: 10.52601/bpr.2022.210034

Driving force of biomolecular liquid–liquid phase separation probed by nuclear magnetic resonance spectroscopy

doi: 10.52601/bpr.2022.210034
Funds:  Part of our nuclear magnetic resonance study was performed at the National Center for Protein Science Shanghai and the High Magnetic Field Laboratory of the Chinese Academy of Sciences. We thank the Ministry of Science and Technology of China (2019YFA0508400 and 2016YFA0500700), the National Natural Science Foundation of China (21874123 and 32071220), and the Collaborative Innovation Program of Hefei Science Center, CAS (2020HSC-CIP009), for financial support.
More Information
  • The assembly of biomolecular condensates is driven by liquid–liquid phase separation. To understand the structure and functions of these condensates, it is essential to characterize the underlying driving forces, e.g., protein–protein and protein–RNA interactions. As both structured and low-complexity domains are involved in the phase separation process, NMR is probably the only technique that can be used to depict the binding topology and interaction modes for the structured and nonstructured domains simultaneously. Atomic-resolution analysis for the intramolecular and intermolecular interactions between any pair of components sheds light on the mechanism for phase separation and biomolecular condensate assembly and disassembly. Herein, we describe the procedures used for the most extensively employed NMR techniques to characterize key interactions for biomolecular phase separation.
  • loading
  • [1]
    Ambadipudi S, Reddy JG, Biernat J, Mandelkow E, Zweckstetter M (2019) Residue-specific identification of phase separation hot spots of Alzheimer's-related protein tau. Chem Sci 10(26): 6503−6507 doi: 10.1039/C9SC00531E
    [2]
    Antoniou C, Fung LWM (2008) Potential artifacts in using a glutathione S-transferase fusion protein system and spin labeling eiectron paramagnetic resonance methods to study protein-protein interactions. Anal Biochem 376(1): 160−162 doi: 10.1016/j.ab.2008.02.001
    [3]
    Aue WP, Bartholdi E, Ernst RR (1976) Two-dimensional spectroscopy. Application to nuclear magnetic-resonance. J Chem Phys 64(5): 2229−2246
    [4]
    Bermel W, Bertini I, Felli IC, Lee YM, Luchinat C, Pierattelli R (2006a) Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. J Am Chem Soc 128(12): 3918−3919 doi: 10.1021/ja0582206
    [5]
    Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006b) C-13-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Reson Sp 48(1): 25−45 doi: 10.1016/j.pnmrs.2005.09.002
    [6]
    Bertini I, Felli IC, Gonnelli L, Kumar MVV, Pierattelli R (2011) C-13 direct-detection biomolecular NMR spectroscopy in living cells. Angew Chem Int Ed 50(10): 2339−2341 doi: 10.1002/anie.201006636
    [7]
    Borcherds W, Bremer A, Borgia MB, Mittag T (2021) How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol 67: 41-50
    [8]
    Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9): 4108−4139 doi: 10.1021/cr900033p
    [9]
    Conicella AE, Dignon GL, Zerze GH, Schmidt HB, D'Ordine AM, Kim YC, Rohatgi R, Ayala YM, Mittal J, Fawzi NL (2020) TDP-43 alpha-helical structure tunes liquid-liquid phase separation and function. Proc Natl Acad Sci USA 117(11): 5883−5894 doi: 10.1073/pnas.1912055117
    [10]
    Conicella AE, Zerze GH, Mittal J, Fawzi NL (2016) ALS mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. Structure 24(9): 1537−1549 doi: 10.1016/j.str.2016.07.007
    [11]
    Courchaine EM, Lu A, Neugebauer KM (2016) Droplet organelles? EMBO J 35(15): 1603-1612
    [12]
    Eletsky A, Moreira O, Kovacs H, Pervushin K (2003) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using C-13 spectroscopy. J Biomol NMR 26(2): 167−179 doi: 10.1023/A:1023572320699
    [13]
    Grzesiek S, Bax A (1992a) Correlating backbone amide and side-chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 114(16): 6291−6293 doi: 10.1021/ja00042a003
    [14]
    Grzesiek S, Bax A (1992b) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99(1): 201−207
    [15]
    Grzesiek S, Bax A (1992c) Improved 3D triple-resonance NMR techniques applied to a 31-kDa protein. J Magn Reson 96(2): 432−440
    [16]
    Grzesiek S, Bax A (1993) Amino-acid type determination in the sequential assignment procedure of uniformly C-13/N-15-enriched proteins. J Biomol NMR 3(2): 185−204
    [17]
    Ikura M, Kay LE, Bax A (1990a) A novel-approach for sequential assignment of H-1, C-13, and N-15 spectra of larger proteins: heteronuclear triple-resonance 3-dimensional NMR-spectroscopy. Application to calmodulin. Biochemistry 29(19): 4659−4667
    [18]
    Ikura M, Marion D, Kay LE, Shih H, Krinks M, Klee CB, Bax A (1990b) Heteronuclear 3D NMR and isotopic labeling of calmodulin — Towards the complete assignment of the H-1-NMR spectrum. Biochem Pharmacol 40(1): 153−160 doi: 10.1016/0006-2952(90)90190-V
    [19]
    Iwahara J, Tang C, Clore GM (2007) Practical aspects of H-1 transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson 184(2): 185−195 doi: 10.1016/j.jmr.2006.10.003
    [20]
    Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by 2-dimensional NMR-spectroscopy. J Chem Phys 71(11): 4546−4553 doi: 10.1063/1.438208
    [21]
    Jensen MR, Zweckstetter M, Huang JR, Backledge M (2014) Exploring free-energy landscapes of intrinsically disordered proteins at atomic resolution using NMR spectroscopy. Chem Rev 114(13): 6632−6660 doi: 10.1021/cr400688u
    [22]
    Jonas S, Izaurralde E (2013) The role of disordered protein regions in the assembly of decapping complexes and RNP granules. Genes Dev 27(24): 2628−2641 doi: 10.1101/gad.227843.113
    [23]
    Kay LE, Xu GY, Singer AU, Muhandiram DR, Formankay JD (1993) A gradient-enhanced HCCH TOCSY experiment for recording side-chain H-1 and C-13 correlations in H2O samples of proteins. J Magn Reson B 101(3): 333−337 doi: 10.1006/jmrb.1993.1053
    [24]
    Kay LE, Xu GY, Yamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson A 109(1): 129−133 doi: 10.1006/jmra.1994.1145
    [25]
    Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442): 467−473 doi: 10.1038/nature11922
    [26]
    Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes — A leap in NMR technology. Prog Nucl Magn Reson Sp 46(2-3): 131−155 doi: 10.1016/j.pnmrs.2005.03.001
    [27]
    Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60(2): 208−219 doi: 10.1016/j.molcel.2015.08.018
    [28]
    Luna RE, Akabayov SR, Ziarek JJ, Wagner G (2014) Examining weak protein-protein interactions in start codon recognition via NMR spectroscopy. FEBS J 281(8): 1965−1973 doi: 10.1111/febs.12667
    [29]
    Matsuo H, Li HJ, Wagner G (1996) A sensitive HN(CA)CO experiment for deuterated proteins. J Magn Reson B 110(1): 112−115 doi: 10.1006/jmrb.1996.0018
    [30]
    McKee AC, Gavett BE, Stern RA, Nowinski CJ, Cantu RC, Kowall NW, Perl DP, Hedley-Whyte ET, Price B, Sullivan C, Morin P, Lee HS, Kubilus CA, Daneshvar DH, Wulff M, Budson AE (2010) TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. J Neuropathol Exp Neurol 69(9): 918−929 doi: 10.1097/NEN.0b013e3181ee7d85
    [31]
    Montelione GT, Lyons BA, Emerson SD, Tashiro M (1992) An efficient triple resonance experiment using C-13 isotropic mixing for determining sequence-specific resonance assignments of isotopically-enriched proteins. J Am Chem Soc 114(27): 10974−10975 doi: 10.1021/ja00053a051
    [32]
    Muhandiram DR, Kay LE (1994) Gradient-enhanced triple-resonance 3-dimensional NMR experiments with improved sensitivity. J Magn Reson B 103(3): 203−216 doi: 10.1006/jmrb.1994.1032
    [33]
    Murthy AC, Dignon GL, Kan Y, Zerze GH, Parekh SH, Mittal J, Fawzi NL (2019) Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26(7): 637−648 doi: 10.1038/s41594-019-0250-x
    [34]
    Murthy AC, Fawzi NL (2020) The (un)structural biology of biomolecular liquid-liquid phase separation using NMR spectroscopy. J Biol Chem 295(8): 2375−2384 doi: 10.1074/jbc.REV119.009847
    [35]
    Musielak B, Janczyk W, Rodriguez I, Plewka J, Sala D, Magiera-Mularz K, Holak T (2020) Competition NMR for detection of hit/lead inhibitors of protein-protein interactions. Molecules 25(13): 3017. https://doi.org/10.3390/molecules25133017
    [36]
    Nagayama K, Kumar A, Wuthrich K, Ernst RR (1980) Experimental-techniques of two-dimensional correlated spectroscopy. J Magn Reson 40(2): 321−334
    [37]
    Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57(5): 936−947 doi: 10.1016/j.molcel.2015.01.013
    [38]
    Pervushin K, Eletsky A (2003) A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment. J Biomol NMR 25(2): 147−152 doi: 10.1023/A:1022225711122
    [39]
    Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2(6): 661−665 doi: 10.1007/BF02192855
    [40]
    Ribbeck K, Gorlich D (2002) The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21(11): 2664−2671 doi: 10.1093/emboj/21.11.2664
    [41]
    Ryan VH, Dignon GL, Zerze GH, Chabata CV, Silva R, Conicella AE, Amaya J, Burke KA, Mittal J, Fawzi NL (2018) Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell 69(3): 465−479 doi: 10.1016/j.molcel.2017.12.022
    [42]
    Schwalbe H, Rexroth A, Eggenberger U, Geppert T, Griesinger C (1993) Measurement of C', C coupling-constants in C-13-labeled proteins — A new method for the stereospecific assignment of gamma-methyl groups in valine residues. J Am Chem Soc 115(17): 7878−7879 doi: 10.1021/ja00070a044
    [43]
    Serber Z, Richter C, Dotsch V (2001) Carbon-detected NMR experiments to investigate structure and dynamics of biological macromolecules. Chembiochem 2(4): 247−251 doi: 10.1002/1439-7633(20010401)2:4<247::AID-CBIC247>3.0.CO;2-V
    [44]
    Serber Z, Richter C, Moskau D, Bohlen JM, Gerfin T, Marek D, Haberli M, Baselgia L, Laukien F, Stern AS, Hoch JC, Dotsch V (2000) New carbon-detected protein NMR experiments using CryoProbes. J Am Chem Soc 122(14): 3554−3555 doi: 10.1021/ja991371m
    [45]
    Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M, Brangwynne CP (2018) Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175(6): 1481−1491 doi: 10.1016/j.cell.2018.10.057
    [46]
    Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102(2): 241−245 doi: 10.1006/jmra.1993.1098
    [47]
    Takeuchi K, Frueh DP, Hyberts SG, Sun ZYJ, Wagner G (2010a) High-resolution 3D CANCA NMR experiments for complete mainchain assignments using C-alpha direct detection. J Am Chem Soc 132(9): 2945−2951 doi: 10.1021/ja907717b
    [48]
    Takeuchi K, Heffron G, Sun ZYJ, Frueh DP, Wagner G (2010b) Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. J Biomol NMR 47(4): 271−282 doi: 10.1007/s10858-010-9430-z
    [49]
    Takeuchi K, Sun Z-YJ, Wagner G (2008) Alternate C-13-C-12 labeling for complete mainchain resonance assignments using C alpha direct-detection with applicability toward fast relaxing protein systems. J Am Chem Soc 130(51): 17210−17211 doi: 10.1021/ja806956p
    [50]
    Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11(4): 371−382 doi: 10.1261/rna.7258505
    [51]
    Tsai WC, Gayatri S, Reineke LC, Sbardella G, Bedford MT, Lloyd RE (2016) Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem 291(43): 22671−22685 doi: 10.1074/jbc.M116.739573
    [52]
    Vaynberg J, Qin J (2006) Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 24(1): 22−27 doi: 10.1016/j.tibtech.2005.09.006
    [53]
    Vernon RM, Chong PA, Tsang B, Kim TH, Bah A, Farber P, Lin H, Forman-Kay JD (2018) Pi-Pi contacts are an overlooked protein feature relevant to phase separation. Elife 7: e31486. https://doi.org/10.7554/eLife.31486
    [54]
    Wagner R, Berger S (1996) Gradient-selected NOESY — A fourfold reduction of the measurement time for the NOESY experiment. J Magn Reson A 123(1): 119−121 doi: 10.1006/jmra.1996.0222
    [55]
    Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE (1994a) A suite of triple-resonance NMR experiments for the backbone assignment of N-15, C-13, H-2 labeled proteins with high-sensitivity. J Am Chem Soc 116(26): 11655−11666 doi: 10.1021/ja00105a005
    [56]
    Yamazaki T, Lee W, Revington M, Mattiello DL, Dahlquist FW, Arrowsmith CH, Kay LE (1994b) An hnca pulse scheme for the backbone assignment of N-15, C-13, H-2-labeled proteins — Application to a 37-kDa TRP repressor DNA complex. J Am Chem Soc 116(14): 6464−6465 doi: 10.1021/ja00093a069
    [57]
    Zhang H, Ji X, Li PL, Liu C, Lou JZ, Wang Z, Wen WY, Xiao Y, Zhang MJ, Zhu XL (2020) Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci China Life Sci 63(7): 953−985 doi: 10.1007/s11427-020-1702-x
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (1097) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return