Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Wei Fen, Wang Sicen, Gou Xilan. A review for cell-based screening methods in drug discovery[J]. Biophysics Reports, 2021, 7(6): 504-516. doi: 10.52601/bpr.2021.210042
Citation: Wei Fen, Wang Sicen, Gou Xilan. A review for cell-based screening methods in drug discovery[J]. Biophysics Reports, 2021, 7(6): 504-516. doi: 10.52601/bpr.2021.210042

A review for cell-based screening methods in drug discovery

doi: 10.52601/bpr.2021.210042
Funds:  This work was supported by the National Natural Science Foundation of China (82003709, 81973277).
More Information
  • Corresponding author: wangsc@mail.xjtu.edu.cn
  • Received Date: 22 August 2021
  • Accepted Date: 05 November 2021
  • Available Online: 21 January 2022
  • Publish Date: 31 December 2021
  • With the biological relevance of the whole cells, low cost compared with animal experiments, a wide variety of cell-based screening platforms (cell-based assay, cell-based microfluidics, cell-based biosensor, cell-based chromatography) have been developed to address the challenges of drug discovery. In this review, we conclude the current advances in cell-based screening and summary the pros and cons of the platforms for different applications. Challenges and improvement strategies associated with cell-based methods are also discussed.
  • loading
  • [1]
    Adamson CS, Chibale K, Goss RJM, Jaspars M, Newman DJ, Dorrington RA (2021) Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev 50(6): 3647−3655 doi: 10.1039/D0CS01118E
    Adan A, Kiraz Y, Baran Y (2016) Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol 17(14): 1213−1221 doi: 10.2174/1389201017666160808160513
    Amelian A, Wasilewska K, Megias D, Winnicka K (2017) Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development. Pharmacol Rep 69(5): 861−870 doi: 10.1016/j.pharep.2017.03.014
    An WF, Tolliday N (2010) Cell-based assays for high-throughput screening. Mol Biotechnol 45(2): 180−186 doi: 10.1007/s12033-010-9251-z
    Arduino DM, Goh V, Mokranjac D, Perocchi F (2021) Drug discovery assay to identify modulators of the mitochondrial Ca(2+) uniporter. Methods Mol Biol 2277: 69−89
    Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences T, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3): 200−216 doi: 10.1038/s41573-020-00114-z
    Banerjee P, Franz B, Bhunia AK (2010) Mammalian cell-based sensor system. Adv Biochem Eng Biotechnol 117: 21−55
    Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M (2021) Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 163: 105876. https://doi.org/10.1016/j.ejps.2021.105876 doi: 10.1016/j.ejps.2021.105876
    Berg EL (2019) Human cell-based in vitro phenotypic profiling for drug safety-related attrition. Front Big Data 2: 47. https://doi.org/10.3389/fdata.2019.00047 doi: 10.3389/fdata.2019.00047
    Berg EL, Hsu YC, Lee JA (2014) Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery. Adv Drug Deliv Rev 69−70: 190−204 doi: 10.1016/j.addr.2014.01.013
    Bialkowska K, Komorowski P, Bryszewska M, Milowska K (2020) Spheroids as a type of three-dimensional cell cultures-examples of methods of preparation and the most important application. Int J Mol Sci 21(17): 6225. https://doi.org/10.3390/ijms21176225 doi: 10.3390/ijms21176225
    Blockus S, Sake SM, Wetzke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Huttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti MA, Eleouet JF, Duprex WP, Thiel V, Hansen G, Bronstrup M, Haid S, Pietschmann T (2020) Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 177: 104774. https://doi.org/10.1016/j.antiviral.2020.104774 doi: 10.1016/j.antiviral.2020.104774
    Boos JA, Misun PM, Michlmayr A, Hierlemann A, Frey O (2019) Microfluidic multitissue platform for advanced embryotoxicity testing in vitro. Adv Sci (Weinh) 6(13): 1900294. https://doi.org/10.1002/advs.201900294 doi: 10.1002/advs.201900294
    Cacabelos R, Carrera I, Martinez-Iglesias O, Cacabelos N, Naidoo V (2021) What is the gold standard model for Alzheimer's disease drug discovery and development? Expert Opin Drug Discov 16(12): 1415−1440
    Capula M, Corno C, El Hassouni B, Li Petri G, Arandelovic S, Group EP (2019) A brief guide to performing pharmacological studies in vitro: reflections from the EORTC-PAMM course "preclinical and early-phase clinical pharmacology". Anticancer Res 39(7): 3413−3418 doi: 10.21873/anticanres.13485
    Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F (2020) Microfluidics as a novel tool for biological and toxicological assays in drug discovery processes: focus on microchip electrophoresis. Micromachines (Basel) 11(6): 593. https://doi.org/10.3390/mi11060593 doi: 10.3390/mi11060593
    Cavo M, Fato M, Penuela L, Beltrame F, Raiteri R, Scaglione S (2016) Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 6: 35367. https://doi.org/10.1038/srep35367 doi: 10.1038/srep35367
    Choi YR, Shim J, Park JH, Kim YS, Kim MJ (2021) Discovery of orphan olfactory receptor 6M1 as a new anticancer target in MCF-7 cells by a combination of surface plasmon resonance-based and cell-based systems. Sensors (Basel) 21(10): 3468. https://doi.org/10.3390/s21103468 doi: 10.3390/s21103468
    Chopra B, Dhingra AK (2021) Natural products: a lead for drug discovery and development. Phytother Res 35(9): 4660−4702 doi: 10.1002/ptr.7099
    Coliaie P, Kelkar MS, Langston M, Liu C, Nazemifard N, Patience D, Skliar D, Nere NK, Singh MR (2021) Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation. Lab Chip 21(12): 2333−2342 doi: 10.1039/D1LC00218J
    Corallo D, Frabetti S, Candini O, Gregianin E, Dominici M, Fischer H, Aveic S (2020) Emerging neuroblastoma 3D in vitro models for pre-clinical assessments. Front Immunol 11: 584214. https://doi.org/10.3389/fimmu.2020.584214 doi: 10.3389/fimmu.2020.584214
    Damiati S, Kompella UB, Damiati SA, Kodzius R (2018) Microfluidic devices for drug delivery systems and drug screening. Genes (Basel) 9(2): 103. https://doi.org/10.3390/genes9020103 doi: 10.3390/genes9020103
    Datta S (2021) Learnings from past failures: future routes of antimicrobial drug discovery. Drug Discov Today 26(9): 2105−2107 doi: 10.1016/j.drudis.2021.07.017
    Davoudi F, Ghorbanpoor S, Yoda S, Pan X, Crowther GS, Yin X, Murchie E, Hata AN, Willers H, Benes CH (2021) Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protoc 2(2): 100391. https://doi.org/10.1016/j.xpro.2021.100391 doi: 10.1016/j.xpro.2021.100391
    Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3): 223−229 doi: 10.1016/j.jsps.2013.11.002
    Dong H, Lin W, Wu J, Chen T (2010) Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochem 11: 23. https://doi.org/10.1186/1471-2091-11-23 doi: 10.1186/1471-2091-11-23
    Drewe J, Cai SX (2010) Cell-based apoptosis assays in oncology drug discovery. Expert Opin Drug Discov 5(6): 583−596 doi: 10.1517/17460441.2010.486829
    Du G, Fang Q, den Toonder JM (2016) Microfluidics for cell-based high throughput screening platforms — a review. Anal Chim Acta 903: 36−50 doi: 10.1016/j.aca.2015.11.023
    Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P (2021) In vitro 3D cultures to model the tumor microenvironment. Cancers (Basel) 13(12): 2970. https://doi.org/10.3390/cancers13122970 doi: 10.3390/cancers13122970
    Foster NC, Hall NM, El Haj AJ (2021) Two-dimensional and three-dimensional cartilage model platforms for drug evaluation and high-throughput screening assays. Tissue Eng Part B Rev. https://doi.org/10.1089/ten.teb.2020.0354 doi: 10.1089/ten.teb.2020.0354
    Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kampfer AAM, Schins RPF, Tigges J, Koch K (2021) Stem cells for next level toxicity testing in the 21st century. Small 17(15): e2006252. https://doi.org/10.1002/smll.202006252 doi: 10.1002/smll.202006252
    Fursov N, Cong M, Federici M, Platchek M, Haytko P, Tacke R, Livelli T, Zhong Z (2005) Improving consistency of cell-based assays by using division-arrested cells. Assay Drug Dev Technol 3(1): 7−15 doi: 10.1089/adt.2005.3.7
    Gao Y, Li P, Pappas D (2013) A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing. Biomed Microdevices 15(6): 907−915 doi: 10.1007/s10544-013-9779-3
    GaoW, Liu M, Chen S, Zhang C, Zhao Y (2019) Droplet microfluidics with gravity-driven overflow system. Chem Eng J 362: 169−175 doi: 10.1016/j.cej.2019.01.026
    Godugu C, Singh M (2016) AlgiMatrix-based 3D cell culture system as an in vitro tumor model: an important tool in cancer research. Methods Mol Biol 1379: 117−128
    Gorshkov K, Pradhan M, Xu M, Yang S, Lee EM, Chen CZ, Shen M, Zheng W (2020) Cell-based no-wash fluorescence assays for compound screens using a fluorescence cytometry plate reader. J Pharmacol Exp Ther 374(3): 500−511 doi: 10.1124/jpet.120.265207
    Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V (2016) Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med 1(1): 63−81 doi: 10.1002/btm2.10013
    Guler MT, Isiksacan Z, Serhatlioglu M, Elbuken C (2018) Self-powered disposable prothrombin time measurement device with an integrated effervescent pump. Sensor Actuat B-Chem 273: 350−357 doi: 10.1016/j.snb.2018.06.042
    Hajjar D, Kremb S, Sioud S, Emwas AH, Voolstra CR, Ravasi T (2017) Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One 12(6): e0177316. https://doi.org/10.1371/journal.pone.0177316 doi: 10.1371/journal.pone.0177316
    Halim AB (2020) Do we have a satisfactory cell viability assay? Review of the currently commercially-available assays. Curr Drug Discov Technol 17(1): 2−22 doi: 10.2174/1570163815666180925095433
    Hamon M, Jambovane S, Bradley L, Khademhosseini A, Hong JW (2013) Cell-based dose responses from open-well microchambers. Anal Chem 85(10): 5249−5254 doi: 10.1021/ac400743w
    Hao Z, Huang W, Li Y, Tong H, Liu G, Wang Z (2020) Flow modeling and experimental verification of flow resistors used in microfluidic chips driven by capillary force. J Micromech Microeng 30(11): 115015. https://doi.org/10.1088/1361-6439/abb52c doi: 10.1088/1361-6439/abb52c
    Hattori K, Sugiura S, Kanamori T (2013) Pressure-driven microfluidic perfusion culture device for integrated dose-response assays. J Lab Autom 18(6): 437−445 doi: 10.1177/2211068213503155
    Hattori N (2014) Cerebral organoids model human brain development and microcephaly. Mov Disord 29(2): 185. https://doi.org/10.1002/mds.25740 doi: 10.1002/mds.25740
    Henrich CJ, Bokesch HR, Dean M, Bates SE, Robey RW, Goncharova EI, Wilson JA, McMahon JB (2006) A high-throughput cell-based assay for inhibitors of ABCG2 activity. J Biomol Screen 11(2): 176−183 doi: 10.1177/1087057105284576
    Hong HJ, Koom WS, Koh WG (2017) Cell microarray technologies for high-throughput cell-based biosensors. Sensors (Basel) 17(6): 1293. https://doi.org/10.3390/s17061293 doi: 10.3390/s17061293
    Hu J, Wala I, Han H, Nagatani J, Barger T, Civoli F, Kaliyaperumal A, Zhuang Y, Gupta S (2015) Comparison of cell-based and non-cell-based assay platforms for the detection of clinically relevant anti-drug neutralizing antibodies for immunogenicity assessment of therapeutic proteins. J Immunol Methods 419: 1−8 doi: 10.1016/j.jim.2015.02.006
    Huh S, Lee J, Jung E, Kim SC, Kang JI, Lee J, Kim YW, Sung YK, Kang HK, Park D (2009) A cell-based system for screening hair growth-promoting agents. Arch Dermatol Res 301(5): 381−385 doi: 10.1007/s00403-009-0931-0
    Heinzman JM, Rice SD, Corkan LA (2010) Robotic liquid handlers and semiautomated cell quantification systems increase consistency and reproducibility in high-throughput, cell-based assay. J AssocLab Autom 15(1): 7−14 doi: 10.1016/j.jala.2009.08.010
    Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F (2016) Living cell microarrays: an overview of concepts. Microarrays (Basel) 5(2): 11. https://doi.org/10.3390/microarrays5020011 doi: 10.3390/microarrays5020011
    Jorgensen WL (2012) Challenges for academic drug discovery. Angew Chem Int Ed Engl 51(47): 11680−11684 doi: 10.1002/anie.201204625
    Kase N, Terashima M, Ohta A, Niwa A, Honda-Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK (2021) Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 10(3): 455−464 doi: 10.1002/sctm.20-0198
    Kim D-K, Kim YS, Kim CS, Lee NK (2021) Method for the rapid screening of drug candidates using single-protein tracking in a living cell. Bull Korean Chem Soc 42(3): 393−397 doi: 10.1002/bkcs.12198
    Kounde CS, Yeo HQ, Wang QY, Wan KF, Dong H, Karuna R, Dix I, Wagner T, Zou B, Simon O, Bonamy GMC, Yeung BKS, Yokokawa F (2017) Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit. Bioorg Med Chem Lett 27(6): 1385−1389 doi: 10.1016/j.bmcl.2017.02.005
    Kumar A, Chettiar S, Parish T (2017) Current challenges in drug discovery for tuberculosis. Expert Opin Drug Discov 12(1): 1−4 doi: 10.1080/17460441.2017.1255604
    Kutlehria S, Sachdeva MS (2021) Role of in vitro models for development of ophthalmic delivery systems. Crit Rev Ther Drug Carrier Syst 38(3): 1−31 doi: 10.1615/CritRevTherDrugCarrierSyst.2021035222
    Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35(7): 659−666 doi: 10.1038/nbt.3906
    Langhans SA (2021) Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov 16(8): 841−850 doi: 10.1080/17460441.2021.1912731
    Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P, Mura S (2018) Multicellular spheroid based on a triple co-culture: a novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 78: 296−307 doi: 10.1016/j.actbio.2018.08.008
    Leung M, Kievit FM, Florczyk SJ, Veiseh O, Wu J, Park JO, Zhang M (2010) Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm Res 27(9): 1939−1948 doi: 10.1007/s11095-010-0198-3
    Li J, Tan W, Xiao W, Carney RP, Men Y, Li Y, Quon G, Ajena Y, Lam KS, Pan T (2018) A plug-and-play, drug-on-pillar platform for combination drug screening implemented by microfluidic adaptive printing. Anal Chem 90(23): 13969−13977 doi: 10.1021/acs.analchem.8b03456
    Li Q, Wang J, Liu G, Sun H, Bian L, Zhao X, Zheng X (2015) Screening bioactive compounds from Ligusticum chuanxiong by high density immobilized human umbilical vein endothelial cells. Anal Bioanal Chem 407(19): 5783−5792 doi: 10.1007/s00216-015-8764-5
    Li W, Lam MS, Birkeland A, Riffel A, Montana L, Sullivan ME, Post JM (2006) Cell-based assays for profiling activity and safety properties of cancer drugs. J Pharmacol Toxicol Methods 54(3): 313−319 doi: 10.1016/j.vascn.2006.02.014
    Li XJ, Valadez AV, Zuo P, Nie Z (2012) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12): 1509−1525 doi: 10.4155/bio.12.133
    Lian J, Luo X, Huang X, Wang Y, Xu Z, Ruan X (2019) Investigation of microfluidic co-flow effects on step emulsification: interfacial tension and flow velocities. Colloid Surface A 568: 381−390 doi: 10.1016/j.colsurfa.2019.02.040
    Lian M, Xu L, Zhu X, Chen X, Yang W, Wang T (2017) Seamless signal transduction from three-dimensional cultured cells to a superoxide anions biosensor via in situ self-assembly of dipeptide hydrogel. Anal Chem 89(23): 12843−12849 doi: 10.1021/acs.analchem.7b03371
    Liang Y, Pan J, Fang Q (2021) Research advances of high-throughput cell-based drug screening systems based on microfluidic technique. Se Pu 39(6): 567−577
    Liu HY, Tuckett AZ, Fennell M, Garippa R, Zakrzewski JL (2018a) Repurposing of the CDK inhibitor PHA-767491 as a NRF2 inhibitor drug candidate for cancer therapy via redox modulation. Invest New Drugs 36(4): 590−600 doi: 10.1007/s10637-017-0557-6
    Liu Q, Zhang Z, Liu Y, Cui Z, Zhang T, Li Z, Ma W (2018b) Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model. J Appl Biomater Funct Mater 16(3): 144−150
    Liu W, Tao Y, Ge Z, Zhou J, Xu R, Ren Y (2021) Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: a full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Electrophoresis 42(7-8): 950−966 doi: 10.1002/elps.202000237
    Liu X, Hu S, Chen X, Bai X (2014) Hollow fiber cell fishing with high-performance liquid chromatography for rapid screening and analysis of an antitumor-active protoberberine alkaloid group from Coptis chinensis. J Pharm Biomed Anal 98: 463−475 doi: 10.1016/j.jpba.2014.06.030
    Liu X, Zheng W, Jiang X (2019) Cell-based assays on microfluidics for drug screening. ACS Sens 4(6): 1465−1475 doi: 10.1021/acssensors.9b00479
    Madden JC, Enoch SJ, Paini A, Cronin MTD (2020) A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern Lab Anim 48(4): 146−172 doi: 10.1177/0261192920965977
    Mao C, Kisaalita WS (2004) Characterization of 3-D collagen hydrogels for functional cell-based biosensing. Biosens Bioelectron 19(9): 1075−1088 doi: 10.1016/j.bios.2003.10.008
    Maruyama J, Inami K, Michishita F, Jiang X, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Miyamura N, Hirayama J, Nishina H, Nogawa D, Yamamoto K, Hata Y (2018) Novel YAP1 activator, identified by transcription-based functional screen, limits multiple myeloma growth. Mol Cancer Res 16(2): 197−211 doi: 10.1158/1541-7786.MCR-17-0382
    Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A (2010) Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 398(1): 227−238 doi: 10.1007/s00216-010-3933-z
    Mohiuddin IS, Wei SJ, Yang IH, Martinez GM, Yang S, Cho EJ, Dalby KN, Kang MH (2021) Development of cell-based high throughput luminescence assay for drug discovery in inhibiting OCT4/DNA-PKcs and OCT4-MK2 interactions. Biotechnol Bioeng 118(5): 1987−2000 doi: 10.1002/bit.27712
    Moridani M, Harirforoosh S (2014) Drug development and discovery: challenges and opportunities. Drug Discov Today 19(11): 1679−1681 doi: 10.1016/j.drudis.2014.06.003
    Mulholland T, McAllister M, Patek S, Flint D, Underwood M, Sim A, Edwards J, Zagnoni M (2018) Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep 8(1): 14672. https://doi.org/10.1038/s41598-018-33055-0 doi: 10.1038/s41598-018-33055-0
    Näther DU, Fenske R, Hurteaux R, Majno S, Smith SD (2006) Time correlated single photon counting — an advancing technique in a plate reader for assay development and high throughput screening. Proceedings of SPIE 6372(1): 637208. https://doi.org/10.1117/12.688419 doi: 10.1117/12.688419
    Olson KR, Eglen RM (2007) Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol 5(1): 137−144 doi: 10.1089/adt.2006.052
    Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398(6): 2505−2533 doi: 10.1007/s00216-010-4223-5
    Ozsoylu D, Isik T, Demir MM, Schoning MJ, Wagner T (2021) Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site applications. Biosens Bioelectron 177: 112983. https://doi.org/10.1016/j.bios.2021.112983 doi: 10.1016/j.bios.2021.112983
    Pan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, Wang P (2019) 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens Bioelectron 130: 344−351 doi: 10.1016/j.bios.2018.09.046
    Park J, Han DH, Park JK (2020) Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20(7): 1191−1203 doi: 10.1039/D0LC00047G
    Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24(10): 2076−2085 doi: 10.1016/j.drudis.2019.06.014
    Pathe-Neuschafer-Rube A, Neuschafer-Rube F, Puschel GP (2021) Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals. Toxins (Basel) 13(4): 247. https://doi.org/10.3390/toxins13040247 doi: 10.3390/toxins13040247
    Quinones GA, Moore TI, Nicholes K, Lee H, Kim S, Sun L, Jeon NL, Stephan JP (2013) Application of a new wall-less plate technology to complex multistep cell-based investigations using suspension cells. Blood 121(7): e25−e33 doi: 10.1182/blood-2012-07-446294
    Radnai L, Stremel RF, Vaissiere T, Lin L, Cameron M, Martin WH, Rumbaugh G, Kamenecka TM, Griffin PR, Miller CA (2020) A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors. J Biol Methods 7(3): e136. https://doi.org/10.14440/jbm.2020.335 doi: 10.14440/jbm.2020.335
    Rajalingham K (2016) Cell-based assays in high-throughput mode (HTS). BioTechnologia 97(3): 227−234
    Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5): 803−809 doi: 10.1016/j.copbio.2012.01.011
    Riss T (2005) Selecting cell-based assays for drug discovery screening. Cell Notes 13: 16−21
    Roy A (2019) Challenges with risk mitigation in academic drug discovery: finding the best solution. Expert Opin Drug Discov 14(2): 95−100 doi: 10.1080/17460441.2019.1553952
    Sanookpan K, Nonpanya N, Sritularak B, Chanvorachote P (2021) Ovalitenone inhibits the migration of lung cancer cells via the suppression of AKT/mTOR and epithelial-to-mesenchymal transition. Molecules 26(3): 638. https://doi.org/10.3390/molecules26030638 doi: 10.3390/molecules26030638
    Schlessinger A, Abagyan R, Carlson HA, Dang KK, Guinney J, Cagan RL (2017) Multi-targeting drug community challenge. Cell Chem Biol 24(12): 1434−1435 doi: 10.1016/j.chembiol.2017.12.006
    Seah YFS, Hu H, Merten CA (2018) Microfluidic single-cell technology in immunology and antibody screening. Mol Aspects Med 59: 47−61 doi: 10.1016/j.mam.2017.09.004
    Sekiguchi H, Washida K, Murakami A (2008) Suppressive effects of selected food phytochemicals on CD74 expression in NCI-N87 gastric carcinoma cells. J Clin Biochem Nutr 43(2): 109−117 doi: 10.3164/jcbn.2008054
    Semenova G, Stepanova DS, Deyev SM, Chernoff J (2017) Medium throughput biochemical compound screening identifies novel agents for pharmacotherapy of neurofibromatosis type 1. Biochimie 135: 1−5 doi: 10.1016/j.biochi.2017.01.001
    Seo Y, Ryu K, Park J, Jeon DK, Jo S, Lee HK, Namkung W (2017) Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One 12(3): e0174935. https://doi.org/10.1371/journal.pone.0174935 doi: 10.1371/journal.pone.0174935
    Shamah SM, Cunningham BT (2011) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136(6): 1090−1102 doi: 10.1039/c0an00899k
    Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16(8): 1314−1331 doi: 10.1039/C6LC00249H
    Shi D, Mi G, Wang M, Webster TJ (2019) In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 198: 228−249 doi: 10.1016/j.biomaterials.2018.10.030
    Soman G, Yang X, Jiang H, Giardina S, Mitra G (2011) Comparison of GD2 binding capture ELISA assays for anti-GD2-antibodies using GD2-coated plates and a GD2-expressing cell-based ELISA. J Immunol Methods 373(1-2): 181−191 doi: 10.1016/j.jim.2011.08.016
    Szabo M, Svensson Akusjarvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS (2017) Cell and small animal models for phenotypic drug discovery. Drug Des Devel Ther 11: 1957−1967 doi: 10.2147/DDDT.S129447
    Tai ZF, Zhang GL, Wang F (2012) Identification of small molecule activators of the janus kinase/signal transducer and activator of transcription pathway using a cell-based screen. Biol Pharm Bull 35(1): 65−71 doi: 10.1248/bpb.35.65
    Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 9(1): 13012. https://doi.org/10.1038/s41598-019-49671-3 doi: 10.1038/s41598-019-49671-3
    Thomas N (2011) Microfabricated apparatus for cell based assays. United States, US7935522B2
    Tu C, Cunningham NJ, Zhang M, Wu JC (2021) Human induced pluripotent stem cells as a screening platform for drug-induced vascular toxicity. Front Pharmacol 12: 613837. https://doi.org/10.3389/fphar.2021.613837 doi: 10.3389/fphar.2021.613837
    Ueda T, Tamura T, Hamachi I (2020) Development of a cell-based ligand-screening system for identifying Hsp90 inhibitors. Biochemistry 59(2): 179−182 doi: 10.1021/acs.biochem.9b00781
    Vicenti I, Dragoni F, Giannini A, Giammarino F, Spinicci M, Saladini F, Boccuto A, Zazzi M (2020) Development of a cell-based immunodetection assay for simultaneous screening of antiviral compounds inhibiting Zika and Dengue virus replication. SLAS Discov 25(5): 506−514
    Wahome PG, Bai Y, Neal LM, Robertus JD, Mantis NJ (2010) Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen. Toxicon 56(3): 313−323 doi: 10.1016/j.toxicon.2010.03.016
    Wang F, Zhao Q, Liu J, Wang Z, Kong D (2020a) Identification of human lactate dehydrogenase A inhibitors with anti-osteosarcoma activity through cell-based phenotypic screening. Bioorg Med Chem Lett 30(4): 126909. https://doi.org/10.1016/j.bmcl.2019.126909 doi: 10.1016/j.bmcl.2019.126909
    Wang L (2018) Drug discovery in China: challenges and opportunities. Natl Sci Rev 5(5): 768−773 doi: 10.1093/nsr/nwy085
    Wang Y, Chen Z, Bian F, Shang L, Zhu K, Zhao Y (2020b) Advances of droplet-based microfluidics in drug discovery. Expert Opin Drug Discov 15(8): 969−979 doi: 10.1080/17460441.2020.1758663
    Wang Y, Fang S, Wu Y, Cheng X, Zhang LK, Shen XR, Li SQ, Xu JR, Shang WJ, Gao ZB, Xia BQ (2021) Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-021-00732-2
    Wegener J (2015) Cell-based microarrays for in vitro toxicology. Annu Rev Anal Chem (Palo Alto Calif) 8: 335−358 doi: 10.1146/annurev-anchem-071213-020051
    Wei F, Zhang X, Cui P, Gou X, Wang S (2021) Cell-based 3D bionic screening by mimicking the drug-receptor interaction environment in vivo. J Mater Chem B 9(3): 683−693 doi: 10.1039/D0TB02661A
    Wollrab V, Caballero D, Thiagarajan R, Riveline D (2016) Ordering single cells and single embryos in 3D confinement: a new device for high content screening. J Vis Exp (115): 51880. https://doi.org/10.3791/51880
    Xi B, Yu N, Wang X, Xu X, Abassi YA (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3(4): 484−495 doi: 10.1002/biot.200800020
    Xu Y, Liu R, Leu NA, Zhang L, Ibragmova I, Schultz DC, Wang PJ (2020) A cell-based high-content screen identifies isocotoin as a small molecule inhibitor of the meiosis-specific MEIOB-SPATA22 complexdagger. Biol Reprod 103(2): 333−342 doi: 10.1093/biolre/ioaa062
    Xu Y, Shrestha N, Preat V, Beloqui A (2021) An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 175: 113795. https://doi.org/10.1016/j.addr.2021.05.005 doi: 10.1016/j.addr.2021.05.005
    Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine 6: 303−310 doi: 10.2217/nnm.10.152
    Yeon Park J, Young Kim H, Shibamoto T, Su Jang T, Cheon Lee S, Suk Shim J, Hahm DH, Lee HJ, Lee S, Sung Kang K (2017) Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg Med Chem Lett 27(17): 3968−3973
    Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1): 110−119 doi: 10.1016/j.copbio.2011.11.002
    Yuan T, Werman JM, Sampson NS (2021) The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2(2): 423−440 doi: 10.1039/D0CB00226G
    Yuste I, Luciano FC, Gonzalez-Burgos E, Lalatsa A, Serrano DR (2021) Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 169: 105626. https://doi.org/10.1016/j.phrs.2021.105626 doi: 10.1016/j.phrs.2021.105626
    Zahra R, Furqan M, Ullah R, Mithani A, Saleem RSZ, Faisal A (2020) A cell-based high-throughput screen identifies inhibitors that overcome P-glycoprotein (Pgp)-mediated multidrug resistance. PLoS One 15(6): e0233993. https://doi.org/10.1371/journal.pone.0233993 doi: 10.1371/journal.pone.0233993
    Zaman GJ, de Roos JA, Blomenrohr M, van Koppen CJ, Oosterom J (2007) Cryopreserved cells facilitate cell-based drug discovery. Drug Discov Today 12(13-14): 521−526 doi: 10.1016/j.drudis.2007.05.008
    Zhang P, Zhang J, Bian S, Chen Z, Hu Y, Hu R, Li J, Cheng Y, Zhang X, Zhou Y, Chen X, Liu P (2016) High-throughput superhydrophobic microwell arrays for investigating multifactorial stem cell niches. Lab Chip 16(16): 2996−3006 doi: 10.1039/C6LC00331A
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12): 1129−1133 doi: 10.1038/nbt1201-1129
    Zhang WY, Yang XN, Jin DZ, Zhu XZ (2004) Expression and enzyme activity determination of human cyclooxygenase-1 and -2 in a baculovirus-insect cell system. Acta Pharmacol Sin 25(8): 1000−1006
    Zhang Z, Yang E, Hu C, Cheng H, Chen CY, Huang D, Wang R, Zhao Y, Rong L, Vignuzzi M, Shen H, Shen L, Chen ZW (2017) Cell-based high-throughput screening assay identifies 2',2'-Difluoro-2'-deoxycytidine gemcitabine as a potential antipoliovirus agent. ACS Infect Dis 3(1): 45−53 doi: 10.1021/acsinfecdis.6b00116
    Zhao XL, Chen JJ, Zhang GN, Wang YC, Si SY, Chen LF, Wang Z (2017) Small molecule T63 suppresses osteoporosis by modulating osteoblast differentiation via BMP and WNT signaling pathways. Sci Rep 7(1): 10397. https://doi.org/10.1038/s41598-017-10929-3 doi: 10.1038/s41598-017-10929-3
    Zhou L, Huang G, Wang S, Wu J, Lee WG, Chen Y, Xu F, Lu T (2011) Advances in cell-based biosensors using three-dimensional cell-encapsulating hydrogels. Biotechnol J 6(12): 1466−1476 doi: 10.1002/biot.201100098
    Zhu X, Yi Chu L, Chueh BH, Shen M, Hazarika B, Phadke N, Takayama S (2004) Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. Analyst 129(11): 1026−1031 doi: 10.1039/b407623k
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (329) PDF downloads(31) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint