Volume 7 Issue 6
Dec.  2021
Turn off MathJax
Article Contents
Fen Wei, Sicen Wang, Xilan Gou. A review for cell-based screening methods in drug discovery[J]. Biophysics Reports, 2021, 7(6): 504-516. doi: 10.52601/bpr.2021.210042
Citation: Fen Wei, Sicen Wang, Xilan Gou. A review for cell-based screening methods in drug discovery[J]. Biophysics Reports, 2021, 7(6): 504-516. doi: 10.52601/bpr.2021.210042

A review for cell-based screening methods in drug discovery

doi: 10.52601/bpr.2021.210042
Funds:  This work was supported by the National Natural Science Foundation of China (82003709, 81973277).
More Information
  • Corresponding author: wangsc@mail.xjtu.edu.cn
  • Received Date: 22 August 2021
  • Accepted Date: 05 November 2021
  • Available Online: 21 January 2022
  • Publish Date: 31 December 2021
  • With the biological relevance of the whole cells, low cost compared with animal experiments, a wide variety of cell-based screening platforms (cell-based assay, cell-based microfluidics, cell-based biosensor, cell-based chromatography) have been developed to address the challenges of drug discovery. In this review, we conclude the current advances in cell-based screening and summary the pros and cons of the platforms for different applications. Challenges and improvement strategies associated with cell-based methods are also discussed.
  • loading
  • [1]
    Adamson CS, Chibale K, Goss RJM, Jaspars M, Newman DJ, Dorrington RA (2021) Antiviral drug discovery: preparing for the next pandemic. Chem Soc Rev 50(6): 3647−3655 doi: 10.1039/D0CS01118E
    [2]
    Adan A, Kiraz Y, Baran Y (2016) Cell proliferation and cytotoxicity assays. Curr Pharm Biotechnol 17(14): 1213−1221 doi: 10.2174/1389201017666160808160513
    [3]
    Amelian A, Wasilewska K, Megias D, Winnicka K (2017) Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development. Pharmacol Rep 69(5): 861−870 doi: 10.1016/j.pharep.2017.03.014
    [4]
    An WF, Tolliday N (2010) Cell-based assays for high-throughput screening. Mol Biotechnol 45(2): 180−186 doi: 10.1007/s12033-010-9251-z
    [5]
    Arduino DM, Goh V, Mokranjac D, Perocchi F (2021) Drug discovery assay to identify modulators of the mitochondrial Ca(2+) uniporter. Methods Mol Biol 2277: 69−89
    [6]
    Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences T, Supuran CT (2021) Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov 20(3): 200−216 doi: 10.1038/s41573-020-00114-z
    [7]
    Banerjee P, Franz B, Bhunia AK (2010) Mammalian cell-based sensor system. Adv Biochem Eng Biotechnol 117: 21−55
    [8]
    Belfiore L, Aghaei B, Law AMK, Dobrowolski JC, Raftery LJ, Tjandra AD, Yee C, Piloni A, Volkerling A, Ferris CJ, Engel M (2021) Generation and analysis of 3D cell culture models for drug discovery. Eur J Pharm Sci 163: 105876. https://doi.org/10.1016/j.ejps.2021.105876
    [9]
    Berg EL (2019) Human cell-based in vitro phenotypic profiling for drug safety-related attrition. Front Big Data 2: 47. https://doi.org/10.3389/fdata.2019.00047
    [10]
    Berg EL, Hsu YC, Lee JA (2014) Consideration of the cellular microenvironment: physiologically relevant co-culture systems in drug discovery. Adv Drug Deliv Rev 69−70: 190−204 doi: 10.1016/j.addr.2014.01.013
    [11]
    Bialkowska K, Komorowski P, Bryszewska M, Milowska K (2020) Spheroids as a type of three-dimensional cell cultures-examples of methods of preparation and the most important application. Int J Mol Sci 21(17): 6225. https://doi.org/10.3390/ijms21176225
    [12]
    Blockus S, Sake SM, Wetzke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Huttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti MA, Eleouet JF, Duprex WP, Thiel V, Hansen G, Bronstrup M, Haid S, Pietschmann T (2020) Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 177: 104774. https://doi.org/10.1016/j.antiviral.2020.104774
    [13]
    Boos JA, Misun PM, Michlmayr A, Hierlemann A, Frey O (2019) Microfluidic multitissue platform for advanced embryotoxicity testing in vitro. Adv Sci (Weinh) 6(13): 1900294. https://doi.org/10.1002/advs.201900294
    [14]
    Cacabelos R, Carrera I, Martinez-Iglesias O, Cacabelos N, Naidoo V (2021) What is the gold standard model for Alzheimer's disease drug discovery and development? Expert Opin Drug Discov 16(12): 1415−1440
    [15]
    Capula M, Corno C, El Hassouni B, Li Petri G, Arandelovic S, Group EP (2019) A brief guide to performing pharmacological studies in vitro: reflections from the EORTC-PAMM course "preclinical and early-phase clinical pharmacology". Anticancer Res 39(7): 3413−3418 doi: 10.21873/anticanres.13485
    [16]
    Caruso G, Musso N, Grasso M, Costantino A, Lazzarino G, Tascedda F, Gulisano M, Lunte SM, Caraci F (2020) Microfluidics as a novel tool for biological and toxicological assays in drug discovery processes: focus on microchip electrophoresis. Micromachines (Basel) 11(6): 593. https://doi.org/10.3390/mi11060593
    [17]
    Cavo M, Fato M, Penuela L, Beltrame F, Raiteri R, Scaglione S (2016) Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 6: 35367. https://doi.org/10.1038/srep35367
    [18]
    Choi YR, Shim J, Park JH, Kim YS, Kim MJ (2021) Discovery of orphan olfactory receptor 6M1 as a new anticancer target in MCF-7 cells by a combination of surface plasmon resonance-based and cell-based systems. Sensors (Basel) 21(10): 3468. https://doi.org/10.3390/s21103468
    [19]
    Chopra B, Dhingra AK (2021) Natural products: a lead for drug discovery and development. Phytother Res 35(9): 4660−4702 doi: 10.1002/ptr.7099
    [20]
    Coliaie P, Kelkar MS, Langston M, Liu C, Nazemifard N, Patience D, Skliar D, Nere NK, Singh MR (2021) Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation. Lab Chip 21(12): 2333−2342 doi: 10.1039/D1LC00218J
    [21]
    Corallo D, Frabetti S, Candini O, Gregianin E, Dominici M, Fischer H, Aveic S (2020) Emerging neuroblastoma 3D in vitro models for pre-clinical assessments. Front Immunol 11: 584214. https://doi.org/10.3389/fimmu.2020.584214
    [22]
    Damiati S, Kompella UB, Damiati SA, Kodzius R (2018) Microfluidic devices for drug delivery systems and drug screening. Genes (Basel) 9(2): 103. https://doi.org/10.3390/genes9020103
    [23]
    Datta S (2021) Learnings from past failures: future routes of antimicrobial drug discovery. Drug Discov Today 26(9): 2105−2107 doi: 10.1016/j.drudis.2021.07.017
    [24]
    Davoudi F, Ghorbanpoor S, Yoda S, Pan X, Crowther GS, Yin X, Murchie E, Hata AN, Willers H, Benes CH (2021) Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protoc 2(2): 100391. https://doi.org/10.1016/j.xpro.2021.100391
    [25]
    Doke SK, Dhawale SC (2015) Alternatives to animal testing: a review. Saudi Pharm J 23(3): 223−229 doi: 10.1016/j.jsps.2013.11.002
    [26]
    Dong H, Lin W, Wu J, Chen T (2010) Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochem 11: 23. https://doi.org/10.1186/1471-2091-11-23
    [27]
    Drewe J, Cai SX (2010) Cell-based apoptosis assays in oncology drug discovery. Expert Opin Drug Discov 5(6): 583−596 doi: 10.1517/17460441.2010.486829
    [28]
    Du G, Fang Q, den Toonder JM (2016) Microfluidics for cell-based high throughput screening platforms — a review. Anal Chim Acta 903: 36−50 doi: 10.1016/j.aca.2015.11.023
    [29]
    Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P (2021) In vitro 3D cultures to model the tumor microenvironment. Cancers (Basel) 13(12): 2970. https://doi.org/10.3390/cancers13122970
    [30]
    Foster NC, Hall NM, El Haj AJ (2021) Two-dimensional and three-dimensional cartilage model platforms for drug evaluation and high-throughput screening assays. Tissue Eng Part B Rev. https://doi.org/10.1089/ten.teb.2020.0354
    [31]
    Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kampfer AAM, Schins RPF, Tigges J, Koch K (2021) Stem cells for next level toxicity testing in the 21st century. Small 17(15): e2006252. https://doi.org/10.1002/smll.202006252
    [32]
    Fursov N, Cong M, Federici M, Platchek M, Haytko P, Tacke R, Livelli T, Zhong Z (2005) Improving consistency of cell-based assays by using division-arrested cells. Assay Drug Dev Technol 3(1): 7−15 doi: 10.1089/adt.2005.3.7
    [33]
    Gao Y, Li P, Pappas D (2013) A microfluidic localized, multiple cell culture array using vacuum actuated cell seeding: integrated anticancer drug testing. Biomed Microdevices 15(6): 907−915 doi: 10.1007/s10544-013-9779-3
    [34]
    GaoW, Liu M, Chen S, Zhang C, Zhao Y (2019) Droplet microfluidics with gravity-driven overflow system. Chem Eng J 362: 169−175 doi: 10.1016/j.cej.2019.01.026
    [35]
    Godugu C, Singh M (2016) AlgiMatrix-based 3D cell culture system as an in vitro tumor model: an important tool in cancer research. Methods Mol Biol 1379: 117−128
    [36]
    Gorshkov K, Pradhan M, Xu M, Yang S, Lee EM, Chen CZ, Shen M, Zheng W (2020) Cell-based no-wash fluorescence assays for compound screens using a fluorescence cytometry plate reader. J Pharmacol Exp Ther 374(3): 500−511 doi: 10.1124/jpet.120.265207
    [37]
    Gupta N, Liu JR, Patel B, Solomon DE, Vaidya B, Gupta V (2016) Microfluidics-based 3D cell culture models: utility in novel drug discovery and delivery research. Bioeng Transl Med 1(1): 63−81 doi: 10.1002/btm2.10013
    [38]
    Guler MT, Isiksacan Z, Serhatlioglu M, Elbuken C (2018) Self-powered disposable prothrombin time measurement device with an integrated effervescent pump. Sensor Actuat B-Chem 273: 350−357 doi: 10.1016/j.snb.2018.06.042
    [39]
    Hajjar D, Kremb S, Sioud S, Emwas AH, Voolstra CR, Ravasi T (2017) Anti-cancer agents in Saudi Arabian herbals revealed by automated high-content imaging. PLoS One 12(6): e0177316. https://doi.org/10.1371/journal.pone.0177316
    [40]
    Halim AB (2020) Do we have a satisfactory cell viability assay? Review of the currently commercially-available assays. Curr Drug Discov Technol 17(1): 2−22 doi: 10.2174/1570163815666180925095433
    [41]
    Hamon M, Jambovane S, Bradley L, Khademhosseini A, Hong JW (2013) Cell-based dose responses from open-well microchambers. Anal Chem 85(10): 5249−5254 doi: 10.1021/ac400743w
    [42]
    Hao Z, Huang W, Li Y, Tong H, Liu G, Wang Z (2020) Flow modeling and experimental verification of flow resistors used in microfluidic chips driven by capillary force. J Micromech Microeng 30(11): 115015. https://doi.org/10.1088/1361-6439/abb52c
    [43]
    Hattori K, Sugiura S, Kanamori T (2013) Pressure-driven microfluidic perfusion culture device for integrated dose-response assays. J Lab Autom 18(6): 437−445 doi: 10.1177/2211068213503155
    [44]
    Hattori N (2014) Cerebral organoids model human brain development and microcephaly. Mov Disord 29(2): 185. https://doi.org/10.1002/mds.25740
    [45]
    Henrich CJ, Bokesch HR, Dean M, Bates SE, Robey RW, Goncharova EI, Wilson JA, McMahon JB (2006) A high-throughput cell-based assay for inhibitors of ABCG2 activity. J Biomol Screen 11(2): 176−183 doi: 10.1177/1087057105284576
    [46]
    Hong HJ, Koom WS, Koh WG (2017) Cell microarray technologies for high-throughput cell-based biosensors. Sensors (Basel) 17(6): 1293. https://doi.org/10.3390/s17061293
    [47]
    Hu J, Wala I, Han H, Nagatani J, Barger T, Civoli F, Kaliyaperumal A, Zhuang Y, Gupta S (2015) Comparison of cell-based and non-cell-based assay platforms for the detection of clinically relevant anti-drug neutralizing antibodies for immunogenicity assessment of therapeutic proteins. J Immunol Methods 419: 1−8 doi: 10.1016/j.jim.2015.02.006
    [48]
    Huh S, Lee J, Jung E, Kim SC, Kang JI, Lee J, Kim YW, Sung YK, Kang HK, Park D (2009) A cell-based system for screening hair growth-promoting agents. Arch Dermatol Res 301(5): 381−385 doi: 10.1007/s00403-009-0931-0
    [49]
    Heinzman JM, Rice SD, Corkan LA (2010) Robotic liquid handlers and semiautomated cell quantification systems increase consistency and reproducibility in high-throughput, cell-based assay. J AssocLab Autom 15(1): 7−14 doi: 10.1016/j.jala.2009.08.010
    [50]
    Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F (2016) Living cell microarrays: an overview of concepts. Microarrays (Basel) 5(2): 11. https://doi.org/10.3390/microarrays5020011
    [51]
    Jorgensen WL (2012) Challenges for academic drug discovery. Angew Chem Int Ed Engl 51(47): 11680−11684 doi: 10.1002/anie.201204625
    [52]
    Kase N, Terashima M, Ohta A, Niwa A, Honda-Ozaki F, Kawasaki Y, Nakahata T, Kanazawa N, Saito MK (2021) Pluripotent stem cell-based screening identifies CUDC-907 as an effective compound for restoring the in vitro phenotype of Nakajo-Nishimura syndrome. Stem Cells Transl Med 10(3): 455−464 doi: 10.1002/sctm.20-0198
    [53]
    Kim D-K, Kim YS, Kim CS, Lee NK (2021) Method for the rapid screening of drug candidates using single-protein tracking in a living cell. Bull Korean Chem Soc 42(3): 393−397 doi: 10.1002/bkcs.12198
    [54]
    Kounde CS, Yeo HQ, Wang QY, Wan KF, Dong H, Karuna R, Dix I, Wagner T, Zou B, Simon O, Bonamy GMC, Yeung BKS, Yokokawa F (2017) Discovery of 2-oxopiperazine dengue inhibitors by scaffold morphing of a phenotypic high-throughput screening hit. Bioorg Med Chem Lett 27(6): 1385−1389 doi: 10.1016/j.bmcl.2017.02.005
    [55]
    Kumar A, Chettiar S, Parish T (2017) Current challenges in drug discovery for tuberculosis. Expert Opin Drug Discov 12(1): 1−4 doi: 10.1080/17460441.2017.1255604
    [56]
    Kutlehria S, Sachdeva MS (2021) Role of in vitro models for development of ophthalmic delivery systems. Crit Rev Ther Drug Carrier Syst 38(3): 1−31 doi: 10.1615/CritRevTherDrugCarrierSyst.2021035222
    [57]
    Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips AW, Burkard TR, Otani T, Livesey FJ, Knoblich JA (2017) Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol 35(7): 659−666 doi: 10.1038/nbt.3906
    [58]
    Langhans SA (2021) Using 3D in vitro cell culture models in anti-cancer drug discovery. Expert Opin Drug Discov 16(8): 841−850 doi: 10.1080/17460441.2021.1912731
    [59]
    Lazzari G, Nicolas V, Matsusaki M, Akashi M, Couvreur P, Mura S (2018) Multicellular spheroid based on a triple co-culture: a novel 3D model to mimic pancreatic tumor complexity. Acta Biomater 78: 296−307 doi: 10.1016/j.actbio.2018.08.008
    [60]
    Leung M, Kievit FM, Florczyk SJ, Veiseh O, Wu J, Park JO, Zhang M (2010) Chitosan-alginate scaffold culture system for hepatocellular carcinoma increases malignancy and drug resistance. Pharm Res 27(9): 1939−1948 doi: 10.1007/s11095-010-0198-3
    [61]
    Li J, Tan W, Xiao W, Carney RP, Men Y, Li Y, Quon G, Ajena Y, Lam KS, Pan T (2018) A plug-and-play, drug-on-pillar platform for combination drug screening implemented by microfluidic adaptive printing. Anal Chem 90(23): 13969−13977 doi: 10.1021/acs.analchem.8b03456
    [62]
    Li Q, Wang J, Liu G, Sun H, Bian L, Zhao X, Zheng X (2015) Screening bioactive compounds from Ligusticum chuanxiong by high density immobilized human umbilical vein endothelial cells. Anal Bioanal Chem 407(19): 5783−5792 doi: 10.1007/s00216-015-8764-5
    [63]
    Li W, Lam MS, Birkeland A, Riffel A, Montana L, Sullivan ME, Post JM (2006) Cell-based assays for profiling activity and safety properties of cancer drugs. J Pharmacol Toxicol Methods 54(3): 313−319 doi: 10.1016/j.vascn.2006.02.014
    [64]
    Li XJ, Valadez AV, Zuo P, Nie Z (2012) Microfluidic 3D cell culture: potential application for tissue-based bioassays. Bioanalysis 4(12): 1509−1525 doi: 10.4155/bio.12.133
    [65]
    Lian J, Luo X, Huang X, Wang Y, Xu Z, Ruan X (2019) Investigation of microfluidic co-flow effects on step emulsification: interfacial tension and flow velocities. Colloid Surface A 568: 381−390 doi: 10.1016/j.colsurfa.2019.02.040
    [66]
    Lian M, Xu L, Zhu X, Chen X, Yang W, Wang T (2017) Seamless signal transduction from three-dimensional cultured cells to a superoxide anions biosensor via in situ self-assembly of dipeptide hydrogel. Anal Chem 89(23): 12843−12849 doi: 10.1021/acs.analchem.7b03371
    [67]
    Liang Y, Pan J, Fang Q (2021) Research advances of high-throughput cell-based drug screening systems based on microfluidic technique. Se Pu 39(6): 567−577
    [68]
    Liu HY, Tuckett AZ, Fennell M, Garippa R, Zakrzewski JL (2018a) Repurposing of the CDK inhibitor PHA-767491 as a NRF2 inhibitor drug candidate for cancer therapy via redox modulation. Invest New Drugs 36(4): 590−600 doi: 10.1007/s10637-017-0557-6
    [69]
    Liu Q, Zhang Z, Liu Y, Cui Z, Zhang T, Li Z, Ma W (2018b) Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model. J Appl Biomater Funct Mater 16(3): 144−150
    [70]
    Liu W, Tao Y, Ge Z, Zhou J, Xu R, Ren Y (2021) Pumping of electrolyte with mobile liquid metal droplets driven by continuous electrowetting: a full-scaled simulation study considering surface-coupled electrocapillary two-phase flow. Electrophoresis 42(7-8): 950−966 doi: 10.1002/elps.202000237
    [71]
    Liu X, Hu S, Chen X, Bai X (2014) Hollow fiber cell fishing with high-performance liquid chromatography for rapid screening and analysis of an antitumor-active protoberberine alkaloid group from Coptis chinensis. J Pharm Biomed Anal 98: 463−475 doi: 10.1016/j.jpba.2014.06.030
    [72]
    Liu X, Zheng W, Jiang X (2019) Cell-based assays on microfluidics for drug screening. ACS Sens 4(6): 1465−1475 doi: 10.1021/acssensors.9b00479
    [73]
    Madden JC, Enoch SJ, Paini A, Cronin MTD (2020) A review of in silico tools as alternatives to animal testing: principles, resources and applications. Altern Lab Anim 48(4): 146−172 doi: 10.1177/0261192920965977
    [74]
    Mao C, Kisaalita WS (2004) Characterization of 3-D collagen hydrogels for functional cell-based biosensing. Biosens Bioelectron 19(9): 1075−1088 doi: 10.1016/j.bios.2003.10.008
    [75]
    Maruyama J, Inami K, Michishita F, Jiang X, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Miyamura N, Hirayama J, Nishina H, Nogawa D, Yamamoto K, Hata Y (2018) Novel YAP1 activator, identified by transcription-based functional screen, limits multiple myeloma growth. Mol Cancer Res 16(2): 197−211 doi: 10.1158/1541-7786.MCR-17-0382
    [76]
    Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A (2010) Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 398(1): 227−238 doi: 10.1007/s00216-010-3933-z
    [77]
    Mohiuddin IS, Wei SJ, Yang IH, Martinez GM, Yang S, Cho EJ, Dalby KN, Kang MH (2021) Development of cell-based high throughput luminescence assay for drug discovery in inhibiting OCT4/DNA-PKcs and OCT4-MK2 interactions. Biotechnol Bioeng 118(5): 1987−2000 doi: 10.1002/bit.27712
    [78]
    Moridani M, Harirforoosh S (2014) Drug development and discovery: challenges and opportunities. Drug Discov Today 19(11): 1679−1681 doi: 10.1016/j.drudis.2014.06.003
    [79]
    Mulholland T, McAllister M, Patek S, Flint D, Underwood M, Sim A, Edwards J, Zagnoni M (2018) Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient. Sci Rep 8(1): 14672. https://doi.org/10.1038/s41598-018-33055-0
    [80]
    Näther DU, Fenske R, Hurteaux R, Majno S, Smith SD (2006) Time correlated single photon counting — an advancing technique in a plate reader for assay development and high throughput screening. Proceedings of SPIE 6372(1): 637208. https://doi.org/10.1117/12.688419
    [81]
    Olson KR, Eglen RM (2007) Beta galactosidase complementation: a cell-based luminescent assay platform for drug discovery. Assay Drug Dev Technol 5(1): 137−144 doi: 10.1089/adt.2006.052
    [82]
    Ona T, Shibata J (2010) Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 398(6): 2505−2533 doi: 10.1007/s00216-010-4223-5
    [83]
    Ozsoylu D, Isik T, Demir MM, Schoning MJ, Wagner T (2021) Cryopreservation of a cell-based biosensor chip modified with elastic polymer fibers enabling ready-to-use on-site applications. Biosens Bioelectron 177: 112983. https://doi.org/10.1016/j.bios.2021.112983
    [84]
    Pan Y, Hu N, Wei X, Gong L, Zhang B, Wan H, Wang P (2019) 3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing. Biosens Bioelectron 130: 344−351 doi: 10.1016/j.bios.2018.09.046
    [85]
    Park J, Han DH, Park JK (2020) Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20(7): 1191−1203 doi: 10.1039/D0LC00047G
    [86]
    Parvathaneni V, Kulkarni NS, Muth A, Gupta V (2019) Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today 24(10): 2076−2085 doi: 10.1016/j.drudis.2019.06.014
    [87]
    Pathe-Neuschafer-Rube A, Neuschafer-Rube F, Puschel GP (2021) Cell-based reporter release assay to determine the activity of calcium-dependent neurotoxins and neuroactive pharmaceuticals. Toxins (Basel) 13(4): 247. https://doi.org/10.3390/toxins13040247
    [88]
    Quinones GA, Moore TI, Nicholes K, Lee H, Kim S, Sun L, Jeon NL, Stephan JP (2013) Application of a new wall-less plate technology to complex multistep cell-based investigations using suspension cells. Blood 121(7): e25−e33 doi: 10.1182/blood-2012-07-446294
    [89]
    Radnai L, Stremel RF, Vaissiere T, Lin L, Cameron M, Martin WH, Rumbaugh G, Kamenecka TM, Griffin PR, Miller CA (2020) A simple and robust cell-based assay for the discovery of novel cytokinesis inhibitors. J Biol Methods 7(3): e136. https://doi.org/10.14440/jbm.2020.335
    [90]
    Rajalingham K (2016) Cell-based assays in high-throughput mode (HTS). BioTechnologia 97(3): 227−234
    [91]
    Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5): 803−809 doi: 10.1016/j.copbio.2012.01.011
    [92]
    Riss T (2005) Selecting cell-based assays for drug discovery screening. Cell Notes 13: 16−21
    [93]
    Roy A (2019) Challenges with risk mitigation in academic drug discovery: finding the best solution. Expert Opin Drug Discov 14(2): 95−100 doi: 10.1080/17460441.2019.1553952
    [94]
    Sanookpan K, Nonpanya N, Sritularak B, Chanvorachote P (2021) Ovalitenone inhibits the migration of lung cancer cells via the suppression of AKT/mTOR and epithelial-to-mesenchymal transition. Molecules 26(3): 638. https://doi.org/10.3390/molecules26030638
    [95]
    Schlessinger A, Abagyan R, Carlson HA, Dang KK, Guinney J, Cagan RL (2017) Multi-targeting drug community challenge. Cell Chem Biol 24(12): 1434−1435 doi: 10.1016/j.chembiol.2017.12.006
    [96]
    Seah YFS, Hu H, Merten CA (2018) Microfluidic single-cell technology in immunology and antibody screening. Mol Aspects Med 59: 47−61 doi: 10.1016/j.mam.2017.09.004
    [97]
    Sekiguchi H, Washida K, Murakami A (2008) Suppressive effects of selected food phytochemicals on CD74 expression in NCI-N87 gastric carcinoma cells. J Clin Biochem Nutr 43(2): 109−117 doi: 10.3164/jcbn.2008054
    [98]
    Semenova G, Stepanova DS, Deyev SM, Chernoff J (2017) Medium throughput biochemical compound screening identifies novel agents for pharmacotherapy of neurofibromatosis type 1. Biochimie 135: 1−5 doi: 10.1016/j.biochi.2017.01.001
    [99]
    Seo Y, Ryu K, Park J, Jeon DK, Jo S, Lee HK, Namkung W (2017) Inhibition of ANO1 by luteolin and its cytotoxicity in human prostate cancer PC-3 cells. PLoS One 12(3): e0174935. https://doi.org/10.1371/journal.pone.0174935
    [100]
    Shamah SM, Cunningham BT (2011) Label-free cell-based assays using photonic crystal optical biosensors. Analyst 136(6): 1090−1102 doi: 10.1039/c0an00899k
    [101]
    Shembekar N, Chaipan C, Utharala R, Merten CA (2016) Droplet-based microfluidics in drug discovery, transcriptomics and high-throughput molecular genetics. Lab Chip 16(8): 1314−1331 doi: 10.1039/C6LC00249H
    [102]
    Shi D, Mi G, Wang M, Webster TJ (2019) In vitro and ex vivo systems at the forefront of infection modeling and drug discovery. Biomaterials 198: 228−249 doi: 10.1016/j.biomaterials.2018.10.030
    [103]
    Soman G, Yang X, Jiang H, Giardina S, Mitra G (2011) Comparison of GD2 binding capture ELISA assays for anti-GD2-antibodies using GD2-coated plates and a GD2-expressing cell-based ELISA. J Immunol Methods 373(1-2): 181−191 doi: 10.1016/j.jim.2011.08.016
    [104]
    Szabo M, Svensson Akusjarvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS (2017) Cell and small animal models for phenotypic drug discovery. Drug Des Devel Ther 11: 1957−1967 doi: 10.2147/DDDT.S129447
    [105]
    Tai ZF, Zhang GL, Wang F (2012) Identification of small molecule activators of the janus kinase/signal transducer and activator of transcription pathway using a cell-based screen. Biol Pharm Bull 35(1): 65−71 doi: 10.1248/bpb.35.65
    [106]
    Thippabhotla S, Zhong C, He M (2019) 3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Sci Rep 9(1): 13012. https://doi.org/10.1038/s41598-019-49671-3
    [107]
    Thomas N (2011) Microfabricated apparatus for cell based assays. United States, US7935522B2
    [108]
    Tu C, Cunningham NJ, Zhang M, Wu JC (2021) Human induced pluripotent stem cells as a screening platform for drug-induced vascular toxicity. Front Pharmacol 12: 613837. https://doi.org/10.3389/fphar.2021.613837
    [109]
    Ueda T, Tamura T, Hamachi I (2020) Development of a cell-based ligand-screening system for identifying Hsp90 inhibitors. Biochemistry 59(2): 179−182 doi: 10.1021/acs.biochem.9b00781
    [110]
    Vicenti I, Dragoni F, Giannini A, Giammarino F, Spinicci M, Saladini F, Boccuto A, Zazzi M (2020) Development of a cell-based immunodetection assay for simultaneous screening of antiviral compounds inhibiting Zika and Dengue virus replication. SLAS Discov 25(5): 506−514
    [111]
    Wahome PG, Bai Y, Neal LM, Robertus JD, Mantis NJ (2010) Identification of small-molecule inhibitors of ricin and shiga toxin using a cell-based high-throughput screen. Toxicon 56(3): 313−323 doi: 10.1016/j.toxicon.2010.03.016
    [112]
    Wang F, Zhao Q, Liu J, Wang Z, Kong D (2020a) Identification of human lactate dehydrogenase A inhibitors with anti-osteosarcoma activity through cell-based phenotypic screening. Bioorg Med Chem Lett 30(4): 126909. https://doi.org/10.1016/j.bmcl.2019.126909
    [113]
    Wang L (2018) Drug discovery in China: challenges and opportunities. Natl Sci Rev 5(5): 768−773 doi: 10.1093/nsr/nwy085
    [114]
    Wang Y, Chen Z, Bian F, Shang L, Zhu K, Zhao Y (2020b) Advances of droplet-based microfluidics in drug discovery. Expert Opin Drug Discov 15(8): 969−979 doi: 10.1080/17460441.2020.1758663
    [115]
    Wang Y, Fang S, Wu Y, Cheng X, Zhang LK, Shen XR, Li SQ, Xu JR, Shang WJ, Gao ZB, Xia BQ (2021) Discovery of SARS-CoV-2-E channel inhibitors as antiviral candidates. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-021-00732-2
    [116]
    Wegener J (2015) Cell-based microarrays for in vitro toxicology. Annu Rev Anal Chem (Palo Alto Calif) 8: 335−358 doi: 10.1146/annurev-anchem-071213-020051
    [117]
    Wei F, Zhang X, Cui P, Gou X, Wang S (2021) Cell-based 3D bionic screening by mimicking the drug-receptor interaction environment in vivo. J Mater Chem B 9(3): 683−693 doi: 10.1039/D0TB02661A
    [118]
    Wollrab V, Caballero D, Thiagarajan R, Riveline D (2016) Ordering single cells and single embryos in 3D confinement: a new device for high content screening. J Vis Exp (115): 51880. https://doi.org/10.3791/51880
    [119]
    Xi B, Yu N, Wang X, Xu X, Abassi YA (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3(4): 484−495 doi: 10.1002/biot.200800020
    [120]
    Xu Y, Liu R, Leu NA, Zhang L, Ibragmova I, Schultz DC, Wang PJ (2020) A cell-based high-content screen identifies isocotoin as a small molecule inhibitor of the meiosis-specific MEIOB-SPATA22 complexdagger. Biol Reprod 103(2): 333−342 doi: 10.1093/biolre/ioaa062
    [121]
    Xu Y, Shrestha N, Preat V, Beloqui A (2021) An overview of in vitro, ex vivo and in vivo models for studying the transport of drugs across intestinal barriers. Adv Drug Deliv Rev 175: 113795. https://doi.org/10.1016/j.addr.2021.05.005
    [122]
    Yang Z, Zhao X (2011) A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs. Int J Nanomedicine 6: 303−310 doi: 10.2217/nnm.10.152
    [123]
    Yeon Park J, Young Kim H, Shibamoto T, Su Jang T, Cheon Lee S, Suk Shim J, Hahm DH, Lee HJ, Lee S, Sung Kang K (2017) Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg Med Chem Lett 27(17): 3968−3973
    [124]
    Yin H, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23(1): 110−119 doi: 10.1016/j.copbio.2011.11.002
    [125]
    Yuan T, Werman JM, Sampson NS (2021) The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2(2): 423−440 doi: 10.1039/D0CB00226G
    [126]
    Yuste I, Luciano FC, Gonzalez-Burgos E, Lalatsa A, Serrano DR (2021) Mimicking bone microenvironment: 2D and 3D in vitro models of human osteoblasts. Pharmacol Res 169: 105626. https://doi.org/10.1016/j.phrs.2021.105626
    [127]
    Zahra R, Furqan M, Ullah R, Mithani A, Saleem RSZ, Faisal A (2020) A cell-based high-throughput screen identifies inhibitors that overcome P-glycoprotein (Pgp)-mediated multidrug resistance. PLoS One 15(6): e0233993. https://doi.org/10.1371/journal.pone.0233993
    [128]
    Zaman GJ, de Roos JA, Blomenrohr M, van Koppen CJ, Oosterom J (2007) Cryopreserved cells facilitate cell-based drug discovery. Drug Discov Today 12(13-14): 521−526 doi: 10.1016/j.drudis.2007.05.008
    [129]
    Zhang P, Zhang J, Bian S, Chen Z, Hu Y, Hu R, Li J, Cheng Y, Zhang X, Zhou Y, Chen X, Liu P (2016) High-throughput superhydrophobic microwell arrays for investigating multifactorial stem cell niches. Lab Chip 16(16): 2996−3006 doi: 10.1039/C6LC00331A
    [130]
    Zhang SC, Wernig M, Duncan ID, Brustle O, Thomson JA (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12): 1129−1133 doi: 10.1038/nbt1201-1129
    [131]
    Zhang WY, Yang XN, Jin DZ, Zhu XZ (2004) Expression and enzyme activity determination of human cyclooxygenase-1 and -2 in a baculovirus-insect cell system. Acta Pharmacol Sin 25(8): 1000−1006
    [132]
    Zhang Z, Yang E, Hu C, Cheng H, Chen CY, Huang D, Wang R, Zhao Y, Rong L, Vignuzzi M, Shen H, Shen L, Chen ZW (2017) Cell-based high-throughput screening assay identifies 2',2'-Difluoro-2'-deoxycytidine gemcitabine as a potential antipoliovirus agent. ACS Infect Dis 3(1): 45−53 doi: 10.1021/acsinfecdis.6b00116
    [133]
    Zhao XL, Chen JJ, Zhang GN, Wang YC, Si SY, Chen LF, Wang Z (2017) Small molecule T63 suppresses osteoporosis by modulating osteoblast differentiation via BMP and WNT signaling pathways. Sci Rep 7(1): 10397. https://doi.org/10.1038/s41598-017-10929-3
    [134]
    Zhou L, Huang G, Wang S, Wu J, Lee WG, Chen Y, Xu F, Lu T (2011) Advances in cell-based biosensors using three-dimensional cell-encapsulating hydrogels. Biotechnol J 6(12): 1466−1476 doi: 10.1002/biot.201100098
    [135]
    Zhu X, Yi Chu L, Chueh BH, Shen M, Hazarika B, Phadke N, Takayama S (2004) Arrays of horizontally-oriented mini-reservoirs generate steady microfluidic flows for continuous perfusion cell culture and gradient generation. Analyst 129(11): 1026−1031 doi: 10.1039/b407623k
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (1824) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return