Volume 6 Issue 6
Mar.  2021
Turn off MathJax
Article Contents
Jiaying Xie, Yiliang Jin, Kelong Fan, Xiyun Yan. The prototypes of nanozyme-based nanorobots[J]. Biophysics Reports, 2020, 6(6): 223-244. doi: 10.1007/s41048-020-00125-8
Citation: Jiaying Xie, Yiliang Jin, Kelong Fan, Xiyun Yan. The prototypes of nanozyme-based nanorobots[J]. Biophysics Reports, 2020, 6(6): 223-244. doi: 10.1007/s41048-020-00125-8

The prototypes of nanozyme-based nanorobots

doi: 10.1007/s41048-020-00125-8
Funds:  This work was financially supported by the Strategic Priority Research Program of CAS (XDB29040101), the National Natural Science Foundation of China (31530026, 31871005, 31900981, 21907043), Chinese Academy of Sciences (YJKYYQ20180048), the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC013), National Key Research and Development Program of China (2017YFA0205501) and Youth Innovation Promotion Association CAS (2019093).
More Information
  • Corresponding author: Kelong Fan, Xiyun Yan
  • Received Date: 28 June 2020
  • Rev Recd Date: 14 October 2020
  • Publish Date: 10 March 2021
  • Artificial nanorobot is a type of robots designed for executing complex tasks at nanoscale. The nanorobot system is typically consisted of four systems, including logic control, driving, sensing and functioning. Considering the subtle structure and complex functionality of nanorobot, the manufacture of nanorobots requires designable, controllable and multi-functional nanomaterials. Here, we propose that nanozyme is a promising candidate for fabricating nanorobots due to its unique properties, including flexible designs, controllable enzyme-like activities, and nano-sized physicochemical characters. Nanozymes may participate in one system or even combine several systems of nanorobots. In this review, we summarize the advances on nanozyme-based systems for fabricating nanorobots, and prospect the future directions of nanozyme for constructing nanorobots. We hope that the unique properties of nanozymes will provide novel ideas for designing and fabricating nanorobotics.
  • loading
  • Ayaz Ahmed KB, Subramanian S, Sivasubramanian A, Veerappan G, Veerappan A (2014) Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity. Spectrochimica Acta Part A 130:54-58
    Balasubramanian S, Kagan D, Jack Hu C-M, Campuzano S, LoboCastañon MJ, Lim N, Kang DY, Zimmerman M, Zhang L, Wang J (2011) Micromachine-enabled capture and isolation of cancer cells in complex media. Angew Chem Int Ed 50(18):4161-4164
    Baraban L, Harazim SM, Sanchez S, Schmidt OG (2013) Chemotactic behavior of catalytic motors in microfluidic channels. Angew Chem Int Ed Engl 52(21):5552-5556
    Celikten A, Cetin A (2016) Recent advances, issues and patents on medical nanorobots. Recent Patents Eng 10(1):28-35
    Choi H, Lee GH, Kim KS, Hahn SK (2018) Light-guided nanomotor systems for autonomous photothermal cancer therapy. ACS Appl Mater Interfaces 10(3):2338-2346
    Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28(10):1918-1925
    Ding H, Cai Y, Gao L, Liang M, Miao B, Wu H, Liu Y, Xie N, Tang A, Fan K, Yan X, Nie G (2018) Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett 19(1):203-209
    Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X (2012) Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat Nanotechnol 7(7):459-464
    Fan K, Jia X, Zhou M, Wang K, Conde J, He J, Tian J, Yan X (2018a) Ferritin nanocarrier traverses the blood brain barrier and kills glioma. ACS Nano 12(5):4105-4115
    Fan K, Xi J, Fan L, Wang P, Zhu C, Tang Y, Xu X, Liang M, Jiang B, Yan X, Gao L (2018b) In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat Commun 9(1):1440. https://doi.org/10.1038/s41467-018-03903-8
    Fournier-Bidoz SB, Arsenault AC, Manners I, Ozin GA (2005) Synthetic self-propelled nanorotors. Chem Commun. https://doi.org/10.1039/b414896g4
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577-583
    Gao W, Uygun A, Wang J (2012) Hydrogen-bubble-propelled zincbased microrockets in strongly acidic media. J Am Chem Soc 134(2):897-900
    Gao L, Giglio KM, Nelson JL, Sondermann H, Travis AJ (2014) Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6(5):2588-2593
    Gao W, de Avila BE, Zhang L, Wang J (2018) Targeting and isolation of cancer cells using micro/nanomotors. Adv Drug Deliv Rev 125:94-101
    Gao L, Gao X, Yan X (2020) Kinetics and mechanisms for nanozymes. In:Yan X et al.(eds) Kinetics and mechanisms for nanozymes. Springer, Singapore, pp 17-39
    Gibbs JG, Zhao YP (2009) Autonomously motile catalytic nanomotors by bubble propulsion. Appl Phys Lett 94(16):163104. https://doi.org/10.1063/1.3122346
    Guix M, Meyer AK, Koch B, Schmidt OG (2016) Carbonate-based Janus micromotors moving in ultra-light acidic environment generated by HeLa cells in situ. Sci Rep 6:21701. https://doi.org/10.1038/srep21701
    Guo J, Gallegos JJ, Tom AR, Fan D (2018) Electric-field-guided precision manipulation of catalytic nanomotors for cargo delivery and powering nanoelectromechanical devices. ACS Nano 12(2):1179-1187
    Guo Z, Wang T, Rawal A, Hou J, Cao Z, Zhang H, Xu J, Gu Z, Chen V, Liang K (2019) Biocatalytic self-propelled submarine-like metal-organic framework microparticles with pH-triggered buoyancy control for directional vertical motion. Mater Today 28:10-16
    He Y, Wu J, Zhao Y (2007) Designing catalytic nanomotors by dynamic shadowing growth. Nano Lett 7(5):1369-1375
    He X, Tan L, Chen D, Wu X, Ren X, Zhang Y, Meng X, Tang F (2013) Fe3O4-Au@mesoporous SiO2 microspheres:an ideal artificial enzymatic cascade system. Chem Commun 49(41):4643-4645
    He L, Ni Q, Mu J, Fan W, Liu L, Wang Z, Li L, Tang W, Liu Y, Cheng Y, Tang L, Yang Z, Liu Y, Zou J, Yang W, Jacobson O, Zhang F, Huang P, Chen X (2020) Solvent-assisted self-assembly of a metal-organic framework based biocatalyst for cascade reaction driven photodynamic therapy. J Am Chem Soc 142(14):6822-6832
    Hong Y, Blackman NM, Kopp ND, Sen A, Velegol D (2007) Chemotaxis of nonbiological colloidal rods. Phys Rev Lett 99(17):178103. https://doi.org/10.1103/PhysRevLett.99.178103
    Hong Y, Velegol D, Chaturvedi N, Sen A (2010) Biomimetic behavior of synthetic particles:from microscopic randomness to macroscopic control. Phys Chem Chem Phys 12(7):1423-1435
    Hortelão AC, Patiño T, Perez-Jiménez A, Blanco À, Sánchez S (2017) Enzyme-powered nanobots enhance anticancer drug delivery. Adv Funct Mater 28(25):1705086. https://doi.org/10.1002/adfm.201705086
    Howse JR, Jones RA, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R (2007) Self-motile colloidal particles:from directed propulsion to random walk. Phys Rev Lett 99(4):048102. https://doi.org/10.1103/PhysRevLett.99.048102
    Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba HN, Xin H, Shen Q, Gu Z (2016) Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 28(43):9573-9580
    Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H (2017) Growth of Au nanoparticles on 2D metalloporphyrinic metalorganic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv Mater 29(32):1700102. https://doi.org/10.1002/adma.201700102
    Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao GF, Xie N, Tang A, Nie G, Liang M, Yan X (2018) Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat Protoc 13(7):1506-1520
    Jiang B, Yan L, Zhang J, Zhou M, Shi G, Tian X, Fan K, Hao C, Yan X (2019a) Biomineralization synthesis of the Cobalt nanozyme in SP94-ferritin nanocages for prognostic diagnosis of hepatocellular carcinoma. ACS Appl Mater Interfaces 11(10):9747-9755
    Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019b) Nanozyme:new horizons for responsive biomedical applications. Chem Soc Rev 48(14):3683-3704
    Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig GU, Wang J (2009) Chemical sensing based on catalytic nanomotors:motion-based detection of trace silver. J Am Chem Soc 131(34):12082-12083
    Khezri B, Beladi Mousavi SM, Krejčová L, Heger Z, Sofer Z, Pumera M (2019) Ultrafast electrochemical trigger drug delivery mechanism for nanographene micromachines. Adv Funct Mater 29(4):1806696. https://doi.org/10.1002/adfm.201806696
    Kim J-w, Dang CV (2006) Cancer's molecular sweet tooth and the warburg effect. Cancer Res 66(18):8927-8930
    Kim DH, Cheang UK, Kohidai L, Byun D, Kim MJ (2010) Artificial} magnetotactic motion control of Tetrahymena pyriformis using ferromagnetic nanoparticles:a tool for fabrication of microbiorobots. Appl Phys Lett 97(17):173702. https://doi.org/10.1063/1.3497275
    Kim K-W, Kim BC, Lee HJ, Kim J, Oh M-K (2011) Enzyme logic gates based on enzyme-coated carbon nanotubes. Electroanalysis 23(4):980-986
    Kline TR, Paxton WF, Mallouk TE, Sen A (2005) Catalytic nanomotors:remote-controlled autonomous movement of striped metallic nanorods. Angew Chem Int Ed 44(5):744-746
    Laocharoensuk R, Burdick J, Wang J (2008) Carbon-nanotubeinduced acceleration of catalytic nanomotors. ACS Nano 2(5):1069-1075
    Li J, Sattayasamitsathit S, Dong R, Gao W, Tam R, Feng X, Ai S, Wang J (2014) Template electrosynthesis of tailored-made helical nanoswimmers. Nanoscale 6(16):9415-9420
    Li J, Wang J, Wang Y, Trau M (2017) Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles. Analyst 142(24):4788-4793
    Lien CW, Chen YC, Chang HT, Huang CC (2013) Logical regulation of the enzyme-like activity of gold nanoparticles by using heavy metal ions. Nanoscale 5(17):8227-8234
    Lien CW, Tseng YT, Huang CC, Chang HT (2014) Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem 86(4):2065-2072
    Lin Y, Xu C, Ren J, Qu X (2012) Using thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew Chem Int Ed Engl 51(50):12579-12583
    Loukanov A, Gagov H, Nakabayashi S (2019a) Artificial nanomachines and nanorobotics. In:Mousa A et al.(eds) The road from nanomedicine to precision medicine. Jenny Stanford Publishing, Singapore, pp 515-532
    Loukanov A, Nikolova S, Filipov C, Nakabayashi S (2019b) Nanomaterials for cancer medication:from individual nanoparticles toward nanomachines and nanorobots. Pharmacia 66(3):147-156
    Ma X, Jang S, Popescu MN, Uspal WE, Miguel-López A, Hahn K, Kim D-P, Sánchez S (2016) Reversed janus micro/nanomotors with internal chemical engine. ACS Nano 10(9):8751-8759
    Manesh KM, Campuzano S, Gao W, Lobo-Castañón MJ, Shitanda I, Kiantaj K, Wang J (2013) Nanomotor-based biocatalytic patterning of helical metal microstructures. Nanoscale 5(4):1310-1314
    Mano N, Heller A (2005) Bioelectrochemical propulsion. J Am Chem Soc 127(33):11574-11575
    Masadeh MM, Karasneh GA, Al-Akhras MA, Albiss BA, Aljarah KM, Al-azzam SI, Alzoubi KH (2015) Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology 67(3):427-435
    Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Fuel for thought:chemically powered nanomotors out-swim nature's flagellated bacteria. ACS Nano 4(4):1782-1789
    Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA (2017) Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med 5(1):23-29
    Munir S, Shah AA, Rahman H, Bilal M, Rajoka MSR, Khan AA, Khurshid M (2020) Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol Lett 42(3):357-373
    Natalio F, Andre R, Hartog AF, Stoll B, Jochum KP, Wever R, Tremel W (2012) Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nat Nanotechnol 7(8):530-535
    Paxton WF, Kistler KC, Olmeda CC, Sen A, St Angelo SK, Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors:autonomous movement of striped nanorods. J Am Chem Soc 126(41):13424-13431
    Perez JM, Asati A, Nath S, Kaittanis C (2008) Synthesis of biocompatible dextran-coated nanoceria with pH-dependent antioxidant properties. Small 4(5):552-556
    Qin W, Peng T, Gao Y, Wang F, Hu X, Wang K, Shi J, Li D, Ren J, Fan C (2017) Catalysis-driven self-thermophoresis of Janus plasmonic nanomotors. Angew Chem Int Ed 56(2):515-518
    Sharma V, Mobin SM (2017) Cytocompatible peroxidase mimic CuO:graphene nanosphere composite as colorimetric dual sensor for hydrogen peroxide and cholesterol with its logic gate implementation. Sens Actuators B 240:338-348
    Sierra DP, Weir NA, Jones JF (2005) A review of research in the field of nanorobotics (No. SAND2005-6808). Sandia National Laboratories
    Singh S, Dosani T, Karakoti AS, Kumar A, Seal S, Self WT (2011) A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials 32(28):6745-6753
    Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, Lee JE, Cho HR, Yoon S, Yang S, Lee S, Qiao S, Ling D, Shin S, Song JK, Kim J, Kim T, Lee H, Kim J, Soh M, Lee N, Hwang CS, Nam S, Lu N, Hyeon T, Choi SH, Kim DH (2015) Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9(6):5937-5946
    Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51(3):794-798
    Tregubov AA, Nikitin PI, Nikitin MP (2018) Advanced smart nanomaterials with integrated logic-gating and biocomputing:dawn of theranostic nanorobots. Chem Rev 118(20):10294-10348
    Van Haastert PJ, Devreotes PN (2004) Chemotaxis:signalling the way forward. Nat Rev Mol Cell Biol 5(8):626-634
    Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198-206
    Vicario J, Eelkema R, Browne WR, Meetsma A, La Crois RM, Feringa BL (2005) Catalytic molecular motors:fuelling autonomous movement by a surface bound synthetic manganese catalase. Chem Commun 31:3936-3938
    Villa K, Krejčová L, Novotný F, Heger Z, Sofer Z, Pumera M (2018) Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv Funct Mater 28(43):1804343. https://doi.org/10.1002/adfm.201804343
    Wan M, Chen H, Wang Q, Niu Q, Xu P, Yu Y, Zhu T, Mao C, Shen J (2019) Bio-inspired nitric-oxide-driven nanomotor. Nat Commun 10(1):966. https://doi.org/10.1038/s41467-019-08670-8
    Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6(3):338-345
    Wang H, Pumera M (2015) Fabrication of micro/nanoscale motors. Chem Rev 115(16):8704-8735
    Wang C-I, Huang C-C, Lin Y-W, Chen W-T, Chang H-T (2012) Catalytic gold nanoparticles for fluorescent detection of mercury (II) and lead (II) ions. Anal Chim Acta 745:124-130
    Wang J, Xiong Z, Zhan X, Dai B, Zheng J, Liu J, Tang J (2017a) A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv Mater 29(30):1701451. https://doi.org/10.1002/adma.201701451
    Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X (2017b) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145-157
    Wang Z, Zhang Y, Ju E, Liu Z, Cao F, Chen Z, Ren J, Qu X (2018) Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat Commun 9(1):3334. https://doi.org/10.1038/s41467-018-05798-x
    Wang J, Dong R, Wu H, Cai Y, Ren B (2019) A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett 12(1):1-19. https://doi.org/10.1007/s40820-019-0350-5
    Xu B, Zhang B, Wang L, Huang G, Mei Y (2018) Tubular micro/nanomachines:from the basics to recent advances. Adv Funct Mater 28(25):1705872. https://doi.org/10.1002/adfm.201705872
    Xu Y, Fei J, Li G, Yuan T, Xu X, Li J (2019) Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew Chem Int Ed 58(17):5572-5576
    Yan X, Gao L (2020) Nanozymology:An Overview. In:Yan X et al. (eds) Nanozymology:an overview. Springer, Singapore, pp 3-16
    Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, Yang G, Shao H, Jiang X (2017) Pharmaceutical intermediate-modified gold nanoparticles:against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11(6):5737-5745
    Yang J, Zhang C, Wang X, Wang W, Xi N, Liu L (2018) Development of micro-and nanorobotics:a review. Sci China Technol Sci 62(1):1-20
    Yoshida W, Yokobayashi Y (2007) Photonic Boolean logic gates based on DNA aptamers. Chem Commun. https://doi.org/10. 1039/b613201d2):195-197
    Zha F, Wang T, Luo M, Guan J (2018) Tubular micro/nanomotors:propulsion mechanisms, fabrication techniques and applications. Micromachines 9(2):78. https://doi.org/10.3390/mi9020078
    Zhang X, Chen C, Wu J, Ju H (2019) Bubble-propelled jellyfish-like micromotors for DNA sensing. ACS Appl Mater Interfaces 11(14):13581-13588
    Zhang Y, Jin Y, Cui H, Yan X, Fan K (2020) Nanozyme-based catalytic theranostics. RSC Adv 10(1):10-20
    Zhao Y, Huang Y, Zhu H, Zhu Q, Xia Y (2016) Three-in-one:sensing, self-assembly, and cascade catalysis of cyclodextrin modified gold nanoparticles. J Am Chem Soc 138(51):16645-16654
    Zhou D, Ren L, Li YC, Xu P, Gao Y, Zhang G, Wang W, Mallouk TE, Li L (2017) Visible light-driven, magnetically steerable gold/iron oxide nanomotors. Chem Commun 53(83):11465-11468
    Zhu P, Chen Y, Shi J (2018) Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 12(4):3780-3795
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (10768) PDF downloads(74) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return