Volume 6 Issue 6
Mar.  2021
Turn off MathJax
Article Contents
Chi Ma, Dandan Zhu, Yu Chen, Yiwen Dong, Wenyi Lin, Ning Li, Wenjie Zhang, Xiaoxuan Liu. Amphiphilic peptide dendrimer-based nanovehicles for safe and effective siRNA delivery[J]. Biophysics Reports, 2020, 6(6): 278-289. doi: 10.1007/s41048-020-00120-z
Citation: Chi Ma, Dandan Zhu, Yu Chen, Yiwen Dong, Wenyi Lin, Ning Li, Wenjie Zhang, Xiaoxuan Liu. Amphiphilic peptide dendrimer-based nanovehicles for safe and effective siRNA delivery[J]. Biophysics Reports, 2020, 6(6): 278-289. doi: 10.1007/s41048-020-00120-z

Amphiphilic peptide dendrimer-based nanovehicles for safe and effective siRNA delivery

doi: 10.1007/s41048-020-00120-z
Funds:  This work was financially supported by the Key Program for International S&T Cooperation Projects of China (2018YFE0117800), the National Natural Science Foundation of China (51773227, 81701815), Natural Science Foundation of Jiangsu Province (BK20170735), the Youth Thousand-Talents Program of China, the Program for Jiangsu Province Innovative Research Talents, the Program for Jiangsu Province Innovative Research Team, the State Key Laboratory of Natural Medicines at China Pharmaceutical University (SKLNMZZ202007), and "Double First-Class" project of China Pharmaceutical University (CPU2018GF05).
More Information
  • Corresponding author: Xiaoxuan Liu
  • Received Date: 28 July 2020
  • Rev Recd Date: 18 September 2020
  • Publish Date: 10 March 2021
  • Small interfering RNA (siRNA)-based RNA interference has emerged as a promising therapeutic strategy for the treatment of a wide range of incurable diseases. However, the safe and effective delivery of siRNA therapeutics into the interior of target cells remains challenging. Here, we disclosed novel amphiphilic peptide dendrimers (AmPDs) that composed of hydrophobic two lipid-like alkyl chains and hydrophilic poly(lysine) dendrons with different generations (2C18-KK2 and 2C18-KK2K4) as nanovehicles for siRNA delivery. These AmPDs are able to self-assemble into supramolecular nanoassemblies that are capable of entrapping siRNA molecules into nanoparticles to protect siRNA from enzymatic degradation and promote efficient intracellular uptake without evident toxicity. Interestingly, by virtue of the optimal balance of hydrophobic lipid-like entity and hydrophilic poly(lysine) dendron generations, AmPD 2C18-KK2K4 bearing bigger hydrophilic dendron can package siRNA to form stable, but more ready to disassemble complexes, thereby resulting in more efficient siRNA releasing and better gene silencing effect in comparison with AmPD 2C18-KK2 bearing smaller dendron. Additional studies confirmed that 2C18-KK2K4 can capitalize on the advantages of lipid and peptide dendrimer vectors for effective siRNA delivery. Collectively, our AmPD-based nanocarriers indeed represent a safe and effective siRNA delivery system. Our findings also provide a new perspective on the modulation of selfassembly amphiphilic peptide dendrimers for the functional and adaptive delivery of siRNA therapeutics.
  • loading
  • (2020) Second RNAi drug approved. Nat Biotechnol 38:385
    Bajan S, Hutvagner G (2020) RNA-based therapeutics:from antisense oligonucleotides to miRNAs. Cells 9(1):137. https://doi.org/10.3390/cells9010137
    Bracci L, Falciani C, Lelli B, Lozzi L, Runci Y, Pini A, De Montis MG, Tagliamonte A, Neri P (2003) Synthetic peptides in the form of dendrimers become resistant to protease activity. J Biol Chem 278(47):46590-46595
    Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNAinterference-based therapeutics. Nature 457(7228):426-433
    Chen C, Posocco P, Liu X, Cheng Q, Laurini E, Zhou J, Liu C, Wang Y, Tang J, Col VD, Yu T, Giorgio S, Fermeglia M, Qu F, Liang Z, Rossi JJ, Liu M, Rocchi P, Pricl S, Peng L (2016) Mastering dendrimer self-assembly for efficient siRNA delivery:from conceptual design to in vivo efficient gene silencing. Small 12(27):3667-3676
    Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F (2005) Peptide and amide bond-containing dendrimers. Chem Rev 105(5):1663-1681
    Darbre T, Reymond JL (2006) Peptide dendrimers as artificial enzymes, receptors, and drug-delivery agents. Acc Chem Res 39(12):925-934
    Dong Y, Chen Y, Zhu D, Shi K, Ma C, Zhang W, Rocchi P, Jiang L, Liu X (2020) Self-assembly of amphiphilic phospholipid peptide dendrimer-based nanovectors for effective delivery of siRNA therapeutics in prostate cancer therapy. J Control Release 322:416-425
    Dong Y, Yu T, Ding L, Laurini E, Huang Y, Zhang M, Weng Y, Lin S, Chen P, Marson D, Jiang Y, Giorgio S, Pricl S, Liu X, Rocchi P, Peng L (2018) A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J Am Chem Soc 140(47):16264-16274
    Heitz M, Javor S, Darbre T, Reymond JL (2019) Stereoselective pH responsive peptide dendrimers for siRNA transfection. Bioconjug Chem 30(8):2165-2182
    Inoue Y, Kurihara R, Tsuchida A, Hasegawa M, Nagashima T, Mori T, Niidome T, Katayama Y, Okitsu O (2008) Efficient delivery of siRNA using dendritic poly (L-lysine) for loss-of-function analysis. J Control Release 126(1):59-66
    Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44(14):6518-6548
    Kanasty R, Dorkin JR, Vegas A, Anderson D (2013) Delivery materials for siRNA therapeutics. Nat Mater 12(11):967-977
    Kay RF (2015) Drugging RNAi. Science 347(6226):1068-1069
    Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268-307
    Khandare J, Calderon M, Dagia NM, Haag R (2012) Multifunctional dendritic polymers in nanomedicine:opportunities and challenges. Chem Soc Rev 41(7):2824-2848
    Kim B, Park JH, Sailor MJ (2019) Rekindling RNAi therapy:materials design requirements for in vivo siRNA delivery. Adv Mater 31(49):e1903637. https://doi.org/10.1002/adma.201903637
    Ledford H (2018) Gene-silencing technology gets first drug approval after 20-year wait. Nature 560(7718):291-292
    Lee CC, MacKay JA, Frechet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517-1526
    Li Y, Bai H, Wang H, Shen Y, Tang G, Ping Y (2018) Reactive oxygen species (ROS)-responsive nanomedicine for RNAi-based cancer therapy. Nanoscale 10(1):203-214
    Liu X, Liu C, Zhou J, Chen C, Qu F, Rossi JJ, Rocchi P, Peng L (2015) Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 7(9):3867-3875
    Liu X, Wang Y, Chen C, Tintaru A, Cao Y, Liu J, Ziarelli F, Tang J, Guo H, Rosas R, Giorgio S, Charles L, Rocchi P, Peng L (2016) A fluorinated bola-amphiphilic dendrimer for on-demand delivery of siRNA, via specific response to reactive oxygen species. Adv Func Mater 26(47):8594-8603
    Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, Posocco P, Wang M, Cui Q, Giorgio S, Fermeglia M, Qu F, Pricl S, Shi Y, Liang Z, Rocchi P, Rossi JJ, Peng L (2014) Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew Chem Int Ed Engl 53(44):11822-11827
    Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33(19):4917-4927
    Malhotra S, Bauer H, Tschiche A, Staedtler AM, Mohr A, Calderon M, Parmar VS, Hoeke L, Sharbati S, Einspanier R, Haag R (2012) Glycine-terminated dendritic amphiphiles for nonviral gene delivery. Biomacromol 13(10):3087-3098
    Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers:a tutorial. Chem Soc Rev 40(1):173-190
    Mullard A (2020) RNAi agents score an approval and drive an acquisition. Nat Rev Drug Discov 19(1):10-10
    Ozpolat B, Sood AK, Lopez-Berestein G (2014) Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 66:110-116
    Percec V, Wilson DA, Leowanawat P, Wilson CJ, Hughes AD, Kaucher MS, Hammer DA, Levine DH, Kim AJ, Bates FS, Davis KP, Lodge TP, Klein ML, DeVane RH, Aqad E, Rosen BM, Argintaru AO, Sienkowska MJ, Rissanen K, Nummelin S, Ropponen J (2010) Self-assembly of Janus dendrimers into uniform dendrimersomes and other complex architectures. Science 328(5981):1009-1014
    Rocchi P, So A, Kojima S, Signaevsky M, Beraldi E, Fazli L, HurtadoColl A, Yamanaka K, Gleave M (2004) Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res 64(18):6595-6602
    Sadler K, Tam JP (2002) Peptide dendrimers:applications and synthesis. J Biotechnol 90(3-4):195-229
    Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V (2019) Designer peptide and protein dendrimers:a cross-sectional analysis. Chem Rev 119(21):11391-11441
    Setten RL, Rossi JJ, Han SP (2019) The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov 18(6):421-446
    Svenson S, Tomalia D (2005) Dendrimers in biomedical applications-reflections on the field. Adv Drug Deliv Rev 57(15):2106-2129
    Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci USA 98(20):10983-10985
    Wagner E (2012) Polymers for siRNA delivery:inspired by viruses to be targeted, dynamic, and precise. Acc Chem Res 45(7):1005-1013
    Weng Y, Xiao H, Zhang J, Liang X-J, Huang Y (2019) RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 37(5):801-825
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers:advances in siRNA delivery. Nat Rev Drug Discov 8(2):129-138
    Wittrup A, Lieberman J (2015) Knocking down disease:a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543-552
    Wu M, Liu X, Jin W, Li Y, Li Y, Hu Q, Chu PK, Tang G, Ping Y (2017) Targeting ETS1 with RNAi-based supramolecular nanoassemblies for multidrug-resistant breast cancer therapy. J Control Release 253:110-121
    Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG (2014) Non-viral vectors for gene-based therapy. Nat Rev Genet 15(8):541-555
    Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew Chem Int Ed Engl 51(34):8478-8484
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (451) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return