Volume 8 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
Xuejun C. Zhang, Zhuoya Yu. Two-state model explaining thermodynamic regulation of thermo-gating channels[J]. Biophysics Reports, 2022, 8(4): 205-211. doi: 10.52601/bpr.2022.220012
Citation: Xuejun C. Zhang, Zhuoya Yu. Two-state model explaining thermodynamic regulation of thermo-gating channels[J]. Biophysics Reports, 2022, 8(4): 205-211. doi: 10.52601/bpr.2022.220012

Two-state model explaining thermodynamic regulation of thermo-gating channels

doi: 10.52601/bpr.2022.220012
Funds:  The authors thank Mr. Hang Li for critical discussions and Dr. T. Juelich (UCAS, Beijing) for linguistic assistance during the preparation of this manuscript. The work was supported by CAS Strategic Priority Research Program (XDB37030301 to XCZ).
More Information
  • Corresponding author: zhangc@ibp.ac.cn (X. C. Zhang)
  • Received Date: 16 June 2022
  • Accepted Date: 23 August 2022
  • Available Online: 03 February 2023
  • Publish Date: 31 August 2022
  • Temperature-sensitive ion channels, such as those from the TRP family (thermo-TRPs) present in all animal cells, serve to perceive heat and cold sensations. A considerable number of protein structures have been reported for these ion channels, providing a solid basis for revealing their structure–function relationship. Previous functional studies suggest that the thermosensing ability of TRP channels is primarily determined by the properties of their cytosolic domain. Despite their importance in sensing and wide interests in the development of suitable therapeutics, the precise mechanisms underlying acute and steep temperature-mediated channel gating remain enigmatic. Here, we propose a model in which the thermo-TRP channels directly sense external temperature through the formation and dissociation of metastable cytoplasmic domains. An open–close bistable system is described in the framework of equilibrium thermodynamics, and the middle-point temperature T½ similar to the V½ parameter for a voltage-gating channel is defined. Based on the relationship between channel opening probability and temperature, we estimate the change in entropy and enthalpy during the conformational change for a typical thermosensitive channel. Our model is able to accurately reproduce the steep activation phase in experimentally determined thermal-channel opening curves, and thus should greatly facilitate future experimental verification.
  • Conflict of interest Xuejun C. Zhang and Zhuoya Yu declare that they have no conflict of interest.
    This article does not contain any studies with human or animal subjects performed by any of the authors.
  • loading
  • Benitez-Angeles M, Morales-Lazaro SL, Juarez-Gonzalez E, Rosenbaum T (2020) TRPV1: Structure, endogenous agonists, and mechanisms. Int J Mol Sci 21(10): 3421. https://doi.org/10.3390/ijms21103421
    Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26(18): 4835−4840 doi: 10.1523/JNEUROSCI.5080-05.2006
    Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478): 113−118 doi: 10.1038/nature12823
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653): 816−824 doi: 10.1038/39807
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966): 517−524 doi: 10.1038/nature02196
    Cummings MD, Farnum MA, Nelen MI (2006) Universal screening methods and applications of ThermoFluor. J Biomol Screen 11(7): 854−863 doi: 10.1177/1087057106292746
    Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607): 347−351 doi: 10.1038/nature17964
    Jordt SE, Tominaga M, Julius D (2000) Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci USA 97(14): 8134−8139 doi: 10.1073/pnas.100129497
    Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478): 107−112 doi: 10.1038/nature12822
    Liu TY, Chu Y, Mei HR, Chang D, Chuang HH (2019) Two vanilloid ligand bindings per channel are required to transduce capsaicin-activating stimuli. Front Mol Neurosci 12: 302. https://doi.org/10.3389/fnmol.2019.00302
    Matta JA, Miyares RL, Ahern GP (2007) TRPV1 is a novel target for omega-3 polyunsaturated fatty acids. J Physiol 578(Pt 2): 397-411
    McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876): 52−58 doi: 10.1038/nature719
    Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M (2003) Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100(13): 8002−8006 doi: 10.1073/pnas.1337252100
    Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5): 705−715 doi: 10.1016/S0092-8674(02)00652-9
    Samanta A, Hughes TET, Moiseenkova-Bell VY (2018) Transient receptor potential (TRP) channels. Subcell Biochem 87: 141−165
    Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430(7001): 748−754 doi: 10.1038/nature02732
    Wes PD, Chevesich J, Jeromin A, Rosenberg C, Stetten G, Montell C (1995) TRPC1, a human homolog of a Drosophila store-operated channel. Proc Natl Acad Sci USA 92(21): 9652−9656 doi: 10.1073/pnas.92.21.9652
    Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos-Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418(6894): 181−186 doi: 10.1038/nature00882
    Yang F, Xiao X, Cheng W, Yang W, Yu P, Song Z, Yarov-Yarovoy V, Zheng J (2015) Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nat Chem Biol 11(7): 518−524 doi: 10.1038/nchembio.1835
    Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359(6372): 237−241 doi: 10.1126/science.aan4325
    Zhang XC (2021) Structural dynamics of membrane proteins (1.0 edn). Beijing, China: Science Press (China)
    Zhang XC, Yang H, Liu Z, Sun F (2018) Thermodynamics of voltage-gated ion channels. Biophysics Reports 4(6): 300−319 doi: 10.1007/s41048-018-0074-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (668) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return